Animate
stories

Welcome

Stuart Andrews is a technology journalist
specialising in PCs, games and business
and educational IT. He writes for a range
of computing and technology magazines
and websites, including ICT Reviews,

PC Pro, Cloud Pro, ComputerActive,
TrustedReviews and The Sunday Times.
His first computer was a Sinclair ZX
Spectrum, but he now uses a range of

tablets, Chromebooks and Windows 8 PCs,

none of which have rubber keys. You can
follow him on Twitter at @SATAndrews.

Andrew Dixon has been

teaching ICT for eight

years. A Computer Science

graduate, he's always

had a passion for the

unlikely combination of
programming and playing rock guitar. He
is currently Head of ICT and Computing at
Summerhill School in the West Midlands
and was nominated for Teacher of the
Year in 2009. A self-confessed coding
geek and gadget junkie, Andrew is always
pursuing new and emerging technologies
in education and writes regularly for ICT
Reviews and PC Pro. You can follow him on
Twitter at @ADXeventide.

Many of the projects in this book use
Scratch. Scratch is developed by the
Lifelong Kindergarten Group at the MIT
Media Lab. See scratch.mit.edu

nyone can code. Certainly, writing the next Minecraft or programming
complex simulations from scratch will require a deeper knowledge, but
anyone and everyone has the potential to learn some basic coding skills,
then take those skills and write a simple program. This book can help
you and your kids take that potential further. Read it, follow the projects and get to
grips with the fundamentals of programming, and you and they can learn to code.

We live in a world where technology and everyday life have never been more
tightly interwoven, and that technology - the hardware, websites and services we use
all the time - is dependent on software. An understanding of how that software is
made is as valuable in the 21st century as an understanding of engineering was in the
19th and 20th, and it’s only going to grow more important.

Forget all that stuff of grave importance, though, or you may miss the fact that
coding can be fun. You can make something in less than an hour, watch it work, then
go back and make it better. As long as you have a computer - and almost any laptop
or PC will do - you can build something brilliant, bizarre or even useful, and the tools
won’t cost you a penny. Coding is creative. It pushes your imagination, your ability to
improvise and your ability to plan.

Most of all, it doesn’t have to be difficult. In this book, we’ll show you how you
can use visual tools such as Scratch to build programs object by object or block by
block, so that kids as young as seven or eight can make their own funny animations
or playable arcade games. While they’re doing it, they’ll absorb fundamental concepts
that will help them develop their skills later on. We also introduce SmallBASIC - a
simplified version of the classic coding language, which is free to use and surprisingly
easy to learn. By the time this book is over, we’ll have started using Visual Basic, a tool
that many professional programmers use every day.

The projects in this book are fun, so that kids and adults will enjoy making them,
and playing them once they’re done. They’re also easy to customise, so that novice
programmers can take what we’ve put together, change it and make their own mark.
That’s important, because programming isn’t about using technology, but about taking
it apart, seeing how it works and making it better. We hope that you and your kids will
take these projects, improve them and make them your own. There’s no better start on
a programmer’s journey.

Stuart Andrews
Editor

Contents

SECTION 1
Start coding

8 Why learn to code?
See why coding is a vital skill

10 Introducing Scratch
The perfect way to start coding

12 Scratch basics
Taking a tour around Scratch

14 My first Scratch program
Say “Hello World"” with a magic cat

16 The animal band
Get interactive with this musical show

16

20 Animate a Scratch cartoon
Make your own spooky cartoon

24 Shark vs food
Learn to use clones to save you time

28 Your first Scratch game
Build an addictive shoot-em-up

32 Remix the game
The game is good. Let's make it perfect

SECTION 2
Build your skills

4.0 Fun with Scratch graphics
Generate amazing patterns

15

46 Paint with Scratch
Make your own painting app

52 My Scratch racing game
Take this top-down racer for a spin

60 My Scratch quiz
Build your own brilliant quiz

68 My incredible Scratch app
This monkey-themed timer is great fun

72 Put yourself in the program
Webcam graphics and motion controls

78 Share your projects
Showcase your work to the world

80 Remix your projects
Turn Scratch projects into something new

82 My awesome Scratch game
Harness even more advanced techniques

90 Your next steps in coding
Where next on your coding adventure?

BASIC basics

94 Introducing SmallBASIC
Take your first steps into BASIC

96 Preparing to program
Installing and using SmallBASIC

104

98 My first SmallBASIC program
Coding doesn't get any easier than this

100 Sentence generator
Make crazy sentences from scratch

104 Create your own quiz
Code your own maths quiz game

110 SmallBASIC graphics
Learn about SmallBASIC's graphics
functions

SECTION 4
The next level

116 Introducing Visual Basic

Looking for more power?
Time to get serious about coding

122 Building your first Basic game
Have some fun coding your first
blockbuster game

132 Building a Visual Basic app
Create a working slideshow app

14.0 Where do you go next?
More projects, more languages, more code

144 GLOSSARY
All those vital coding terms defined

146 RESOURCES

Section 1

Start
coding

The ability to program has never been as

important as it is right now. In a digital age, an
understanding of code and how it works is an
incredibly useful skill. It can transform you from
someone who uses other people’s software into
someone who can make it. It can help you get to
grips with real computing, and it can be a fun and
interesting pastime. It might even one day help

Page 8
Why learn
to code?

Create something
brilliant with just

a PC, screen and
some free software

Page 20
Animate a
Scratch
cartoon

Scratch is perfect
for creating
animations

Page 10
Introducing
Scratch
Scratch’s simple
drag-and-drop

approach is perfect
for novices

Page 24
Battle:

Shark vs Food
In this tale of
sharks, food and

overeating, we
make use of clones

Page
Scratch
basics

you get a job. Right now, this knowledge might
seem out of reach, but with the aid of the projects
on the next few pages and an easy, graphical
programming tool called Scratch, we're going to
help you through the fundamental concepts, and
steadily teach you how to code. Before you even
know it, you'll have taken your first steps into a
world of programming and be hungry for more.

12 Page 14
My first
Scratch
program

Find your way

around the different Build your first
parts of Scratch’'s simple Scratch
simple interface script

Page 28 Page 32

Your first Remix the

Scratch

game game

Put together Transform your

your first arcade
shoot-em-up game

in Scratch

new graphics

game with some
music or exciting,

Page 16
The animal
band

Make your sprites

interact with a click
of the mouse and a
touch of the pointer

Why learn
to code?

In a digital age, being able to code has become a vital skill. Discover how to
create something brilliant using just a PC, a screen and free software

ode is everywhere, and not
just where you might think.
When you’re running apps on
a smartphone or playing games
on a console, it seems obvious that the app
you’re using or the game you’re playing has
been put together by programmers, using
lines of code to stitch together every last
feature, every button you tap and everything
you see on the screen, so that it all does the
job it’s meant to do.
This is why learning to code is important.
It can take you from someone who can use
technology to someone who can create
technology or make amazing things with it. Computer-generated movies exist because programmers developed
It could also be the passport to an incredible the software to produce them, and work with artists to code more lifelike
future. You could one day be helping to build or advanced effects. Blender is a free 3D graphics package, developed by
the next iPhone, create a blockbuster film or hundreds of programmers working together.
help a Formula One racing team make faster

cars, all by using your coding skills. the result on the screen, and it’s pretty hard to make
Most importantly, coding can be fun. Often, you're any mistakes that you won’t be able to fix. Coding
creating something brilliant from nothing, using can be like solving a puzzle. You know what you want
just a computer, a screen and some free software. to do, or that something isn’t working properly, and
Change something in your program and you can see it’s exciting to find a way to make it better. Whatever

you’re doing, you can do something brilliant, and
make it your own.

What can this book do to help?

When it comes to computing, code means - is the art of writing those instructions so This isn’t one of those books that tells you all about

a set of written instructions for a computer, that the computer can understand them, programming but not how to do it. Nor is it one of
usually arranged in a structure called a and the program functions as it should. those books that gives you lots of code to type in,
program. When a user runs the program, It's also the art of arranging those but doesn’t tell you how it works or what it’s doing.
the code tells the computer what to show instructions so that the program works Instead, we’re going to take you through a series

on the screen, how to process any data as smoothly and as quickly as it can, of projects that will introduce the most important
that the program uses, and what to do if and doing all this in a way that other concepts, help you use the key building blocks of
certain things happen; for example, if a programmers can follow if they need to code, and enable you to create fun programs that
button is pressed. Programming — or coding look at or change your code. you can then go back and change. We’re going to start

off easy and slowly add the more complex

You might start as
the young apprentice,
but you'll finish
feeling like a coding
Jedi Master

stuff, so that you’re never left drowning in a sea of
jargon, or having your mind boggled by big chunks
of code that make your eyes and brain hurt. You
can start the book knowing almost nothing, but by
the end you’ll feel confident enough to explore the
world of coding further. You might start as the young
apprentice, but you’ll finish feeling like a coding
Jedi Master.

The projects are designed so that they can be
completed by younger children with a little parental
help, or by older children working on their own.

Coding doesn’t have to be
difficult. Use easy tools like
MIT’s Scratch, and almost
How does it work? anyone can do it.
Our projects kick off with Scratch - a highly visual,
easy-to-use programming tool that was designed to
introduce the main concepts of programming, and
help young novice coders build something good with
minimum fuss. We’ll then move onto SmallBASIC,

a refined version of the classic coding language,
designed to get young programmers used to working

Without
programmers,
we wouldn’t have
amazing games
like Minecraft.
Learn to code, and
you might help
create the next big
gaming hit.

with a proper text-based programming environment.
Finally, we’ll look at projects that use Visual Basic
Express - a free version of the same tool being used
by millions of professional programmers around

the world.

Along the way, we’ll tell you what you’re going to
learn, take each project apart, and pick out all the vital
bits of code that make the program work as it should,
or that you might want to come back to and change
later on. After all, these aren’t our fully finished
projects - they’re starting points for your own.

Introducing
Scratch

With a drag-and-drop approach, Scratch is the perfect way to start coding

What Scratch
is and what it
does

How to joinin
and start
using it

What a sprite
is, and how
you use it

riginally developed by computer scientists
at America’s Massachusetts Institute of
Technology (MIT), Scratch is a simple,
visual programming language that you can
use to create cartoon animations, interactive stories
and simple games. It’s designed for kids aged eight to
16, but it’s a good way for someone of any age to learn
the basics of programming. While a Scratch program
might not look like what you’d think of as a program,
with its chunky blocks you drag and click together, it
still works like one and uses the basic parts that you'd
find in a real program.
The great thing about Scratch is that it takes
away a lot of the complexity of programming and
leaves you free to think about how the program
needs to work and what it needs to do. You don’t need
to worry about writing your code in the right way so
that your computer can understand it. You just drag
blocks into the Scripts space and click them together,
a bit like blocks of Lego. Make a mistake and put
things in the wrong order, and you can easily separate
the blocks, change, delete or move them around.

The most important things in any Scratch
project are the sprites. Sprites are the
characters or objects that move around
or do things in your program. They're the
heroes and the villains, the actors in your
cartoons, the cars and spaceships that you
might set racing around. You program
what the sprites do and when they do

it by giving them instructions in scripts.
These tell your sprites what to do and
where to go, what to say or what noise
to make. They also tell your sprite what
to do when something happens - for

instance, when it hits another sprite.

The default sprite — the one that
automatically appears in any new project
—is the Scratch cat, but he doesn't have to
be the star of your program. You can use
any sprite from the large library, or make
your own. The great thing about sprites is
that, once you've added one and built a
script, you can duplicate it, change it and
use it again in the same project, or even
export it — make a copy and send it out of
your project — so that you can use it in a
completely different project.

Scratch projects are designed for sharing. You can try other
people’s, and transform them with your own ‘remix’ projects.

It’s hard to imagine a more intuitive way to code.

Scratch doesn’t just give you all the building
blocks for a program, but also a whole grab-bag of
great stuff that you can use in them. You’ll find a wide
range of cartoon characters to star in your program -
everything from dogs and dinosaurs to ghosts, aliens
and penguins. You'll find a selection of background
scenery, and a library of musical instruments, drums
and sound effects. And if Scratch doesn’t have what
you're looking for, it’s easy to import your own stuff
from your computer or use the simple, built-in tools to
make new characters, scenes and sounds.

The other great thing about Scratch is that you
don’t have to learn on your own. The Scratch website
(scratch.mit.edu/) is the centre of a huge community,
where you can try other users’ programs or get help,
hints and tips on making your own. It’s also where
you can eventually share your own programs, so
that when you’ve made something that you're
proud of you can let your friends and family try it
out. Plus, with millions of Scratch users out there,
you could make a name for yourself as a Scratch
coding superstar!

Signing up for Scratch

You don't need to install anything to start coding with Scratch.
Switch on your computer, fire up your browser, and type
scratch.mit.edu into the browser and the page loads. Click on
the Create button or on the Try it Out button below, and the

Scratch editor loads, complete with step-by-step instructions to try your first
sample program.

To really get to grips with Scratch, though, you need to sign up.
Click on the Join Scratch button in the bar at the top. Now, go
to the window that pops up and choose a Scratch Username,

then enter a password. You'll need to enter the same password
in each of the two boxes to confirm it. Press Next.

Now you need to enter the month when you were born and
the year, your gender, the country where you live and an
email address. This can be a parent's email address if you don't

have one of your own. When you've entered all these things,
click Next.

You're all signed up! Now it's time to get started. Under ‘Would

you like to:" on the left-hand side, you'll find links to take you to

the sample program we mentioned earlier, choose a basic starter

project to be getting on with, or get help and advice from the
Scratch community’s friendly Welcome Committee. The projects here do a
nice job of explaining how to use Scratch, and how to behave while you're
using it. Click the OK, Let's Go button to go back to the Scratch homepage,
and start working on your first Scratch project.

Scratch basics

Scratch is very easy to use once you know your way around its simple
interface and discover how to connect blocks of script together

wo things make Scratch the perfect choice for
novice programmers: its block-based system

spend most of your time, dragging blocks from the
Blocks Palette on the left into the Scripts area on

for building scripts, and its very simple, the right
ogical interface. The Stage , the area where
What the logical interface. The Stag h h
frreren your project plays while you're working on it, takes utting scripts together
diff t ject pl. hil ’ ki it, tak Putti ipts togeth
arts of the up the top-left corner of the window. Beneath that You control what a sprite does by connecting different
p p p y g
Scratch sits the Backdrops area , where you can add blocks of script together. All you need to do is click

inferface do

How to select

background scenery for the Stage, and the Sprites area
, where you add and delete your sprites, and select
them for editing.

on a block in the Blocks Palette, hold the left mouse
button down, then drag it into the Scripts area and
release the mouse button. Drag another block and

instruction The right-hand side of the screen is where all release it just above or below the last one, and the two
blocks and the work really happens. It switches between three will join together in a stack. A white highlight above
connect them windows, covering Scripts, Costumes and Sounds, or below the block to which you’re joining will tell
in a stack and you can flip between the three by clicking the you where the new block will go.

tabs at the top of the area. Scripts is where you’ll Stacks of script run from top to bottom, and once
All about the
Toolbar
and the
Costumes

window

The Toolbar at the top of the screen has all
the most important Scratch menus, plus some
buttons you'll need to use while working

on a project.

File: Clicking on File opens up a dropdown

menu, with options to start a new Scratch
project, save your current project, save your
current project as a copy, go to the My Stuff page
to look at other projects, upload a project you've
saved on your computer, or download a project
so that it's saved on your computer. The Revert
option resets the whole project to the state it was
in when you launched Scratch and opened it. It's
a useful option if you've made a total mess of
things, but use it carefully as you could lose hours
of work!

Edit: The Undelete option is the biggie here.

Scratch makes it a bit too easy to delete
a huge block of instructions in one go. If you
do it accidentally, you'll need to click Edit then
Undelete to bring it back. The Small Stage Layout

option offers you a different interface that gives
you more space for the Scripts area. This can be
useful when you're working on a complex project,
and you can always click it again to go back to the
normal layout. The Turbo mode option runs your
project at a faster speed. You can switch it on and
off by clicking it again.

Tips: Opens up a Tips window, with a

couple of built-in step-by-step project
walkthroughs, and advice on the different types
of block and what they all do.

About: Takes you to the About Scratch
webpage, which tells you more about
Scratch and how to use it.

Duplicate: Click on this and your mouse

pointer becomes a rubber stamp. Clicking
on a Sprite on the Stage will create an exact
duplicate, complete with costumes and scripts.
Clicking on a block of script in the Script area
will make another copy of the block. You can

they’re joined they stay joined unless you click and
drag a block down away from the block above. When
you do that, any blocks joined to it at the bottom will
move away at the same time. This is important when
it comes to deleting or replacing an individual block.
If you don’t drag it away from the blocks above, then
drag away the blocks below, you’ll delete every block
in the script.

You can switch between the different types of block
by clicking on the categories - Motion, Looks, Sound
and the rest - at the top of the Blocks Palette. Click
on Control and you’ll notice that some blocks have
a kind of C or E shape. These blocks are designed to
work closely with other blocks and change what they
do, and will fit in above and below existing blocks. Just
drag them into the Scripts area, but watch the white
highlights to see where they’ll slot in. And when you
add blocks to a C- or E-shaped control block, watch
the highlights to check that they’re going to fit in the
right place.

Clicking on the Costumes
tab opens the Costumes
window. Costumes allow you
to clothe your sprites with
different graphics, so that you
can have different frames, to
make your sprite look like its
walking or running, or different
expressions, to make it look
happy, sad, angry or frightened.
Existing Costumes for the
current sprite are listed on the
left , or you can add your
own Costumes from the library
, from a camera

, or by painting your own in the Costume editor

also duplicate sprites and blocks by right-clicking
on them and then left-clicking Duplicate in
the menu.

Delete: Click on this and your pointer

becomes a pair of scissors. Clicking on a
Sprite will now delete it, and the same goes for
a block of script in the Script area. You can also
delete sprites and blocks by right-clicking on
them, then left-clicking Delete in the menu.

Grow: Click on this button, then click on a
sprite in the Stage window, and it will
grow bigger.

Shrink: Click on this button, then click on
a sprite in the Stage window, and it will
get smaller.

Block Help: Click here, then click on a block

in the Blocks Palette or Script area. A tips
window will appear, telling you what it is and how
it works — a helpful reminder.

. You can also

use the Costume editor to change the existing Costumes (we'll talk about this in more

detail later on).

My first Scratch
program

It's time to write your very first Scratch program, and make the Scratch cat
magically appear using some simple but fun effects

or our first program, we’re going to keep the Stage, then the green Go flag. You've just written
things simple. We’ll use the Cati sprite that your first program, and clicking the green flag starts
appears with every new Scratch project, and it running.

How to build we’ll do nothing more complex than add a
asimple background and drag a few blocks into place. You've got a friendly cat, but not the most
Scratch script interesting program. Let's add a backdrop to
Our give our feline friend some scenery. Go the
How to bring leading Backdrop area to the left of the Sprites area,
in backdrops actor and click on the ‘Choose new backdrop from library’
today is option. Click on the beach Malibu picture, and click OK.
About simple the ever-friendly The new background is a start, but let's make things a bit
visual effects Scratch cat. He more exciting.
wants to say ‘Hello!’
How to use Click on the Looks
loopsin a category in the
Scratch Blocks Palette, then
program drag and drop the

Say Hello! Block into

the Scripts area.

Click on the block,

and the cat will say ‘Hello’ from the Stage.

Now go to the Events block and drag the
When Clicked block with the picture of the
green flag so that it sits on top of the ‘say
Hello" block. Press the red Stop button above

How about
a cat that
magically
appears on
the beach? Click on the
Scripts tab, then drag
the ‘say Hello!" block
away from the green
flag block, and leave it
somewhere at the

bottom of the area. Now click on the Looks category in
the Blocks Palette, and drag the block that says ‘set color

effect to 0" into place beneath the green flag block. When you use the Repeat block, you're
creating a loop. Loops are one of the
Where a most common structures you'll find in a
block has an program. They tell the computer to keep
arrow on it, on doing something until a certain
it means condition is reached - in this case, until
there's more than one the loop has run ten times.

option. Click on the
arrow, and select
Pixelate from the list of
effects. Now we need to
change the strength of
the effect. Click on the
white area with the
number in it, and type
in -250.

Now for the clever bit. Drag the ‘change

color effect by 25’ block from the Blocks

Palette and place it underneath your existing

blocks. Change the effect from ‘color’ to
‘pixelate’. This will start transforming your cat from a
blocky mess into his old feline form. A sound effect adds
to the fun, and makes the change take a little longer.
Click on the Sound category and drag the ‘play drum 1
for 0.25 beats' block into place.

Using loops is a good way to keep
your program working at a repetitive
task without having to keep adding
the same instructions yourself. In more
complex programs, they play a large part
in controlling how the program and the
different parts of it behave.

Click the arrow next to drum 1 and select
drum 17, the Vibraslap. Now, we could just
keep adding the last two blocks, doing so ten
times over to bring the cat back to normal (as

that's how many steps it would take to turn the Pixelate
effect from -250 to 0). Luckily, there's a quicker way.
Click on the Control category in the Blocks Palette, then
drag the ‘repeat 10’ block to the Scripts area and drop it
in below the first ‘set pixelate..." block.

Now grab the ‘change Pixelate effect...’
block and drop it inside the C of the ‘repeat’
block. See how the 'Play drum..." block
comes with it? Drop it in place, then drag the

‘say Hello!" block up again so that it connects to the rest
of the program. You're program is done! Press the green
flag above the Stage to see it in action.

Your cat doesn't have to say ‘Hello'. Click on the white
box next to ‘say’ on the purple block and you can type
in anything you like. Try changing the drum noise in step
7 to different sounds, and try changing the duration (the
number before the beats) to different values, like 0.1 or
0.5. See how the project works with different effects,
like whirl or ghost. Just remember to alter the setting in
both the Set and Change purple blocks, and change the
strength of the effect to see what that does. Make the
cat appear your way!

The animal
band

It's time to get interactive as you put an animal band on the stage

How to make
sprites
interact with
the mouse
and pointer

How to make
music in
Scratch

How to work
with values
and
coordinates

How to copy
scripts from
one sprite to
another

ur first Scratch program was fun, but it

wasn’t very clever or interactive. The

most useful and interesting programs

involve interaction - they respond to an
action from the user, whether that’s moving the
mouse, tapping a key on the keyboard or clicking
on a button on the screen. That’s why our next
project goes a little deeper, with a musical bunch of
animals, all primed and ready to perform at the first
touch of the pointer.

This time
we'll start
with a
backdrop.
Go to the Backdrop
area next to the
Sprites area, and click
on the ‘Choose
backdrop from library’
button. Scroll down
until you can see the
Stage backdrop with
the red curtain, then
click to select it and press OK. The stage is here,
and with Scratch cat on the boards it already has our
first performer.

Let's make sure our first musician hits the

right spot every time. Click on the Scratch cat

sprite in the Sprites area to select it. Now click

on the Scripts tab, then the Events category.
Drag the ‘when green flag clicked' block from the Blocks
Palette and drop it onto the Scripts area.

Now click on the Motion category and drag

the ‘go to x: y:' block onto the Scripts area

and stack it underneath the green flag block.

By putting numbers — or coordinates — next
to the x and y, we can control exactly where the cat
appears on stage. Here, click on the number next to x
and type 70, then click on the number next to the y and
type -77. Click on the block, and our cat moves into the
right position.

Now for the interactive bit. Click on the

Control category, then drag the ‘forever'

block onto the Scripts area and connect it at

the bottom. The ‘forever’ block keeps
running the blocks inside it over and over, no matter
what else is happening in the script. We're going to use it
to make sure this script keeps looking for our user to
interact with the program.

Grab the ‘if
x then x'
block from
the Blocks
Palette and drop it inside
the C of the ‘forever’
block. The 'if x then x’
block tells the script
that if a certain ‘thing’
happens, it's to do
whatever instructions we
give it inside the C of the block. We'll define what that
‘thing’ is in the next step.

Click the Sensing

category, then drag

the "touching’ block

and drop it onto the
little slot between the ‘if" and
‘then’ of the 'if then' block. You
have to be careful here, so watch
for the highlight to make sure it's
going in the right place. Click the
arrow next to the question mark,
and select ‘'mouse-pointer’ from
the dropdown menu.

Our script is now looking to see whether the

mouse pointer touches the sprite, so we need

to tell it what to do when that happens. First,

a simple visual effect. Click on the Looks
category, and drag the ‘go to front' block, then the
‘change size by 10" block into the C shape of the 'if
then' block.

It's time to get our star making music.

Click on the Sound category, drag the ‘set

instrument to x' to block onto the Scripts

area, and drop it right beneath the ‘change
size by x' block. Again, watch the highlight to make sure
it's going in the right place. Click on the arrow next to the
1 and set the instrument to 11, the Saxophone.

That tells the script what noise to make when

we touch the sprite with our pointer, but

what about which notes to play? Drag the

‘play note x for x beats' block into the Scripts
area and stack it underneath the last block. Click the
arrow next to the first number, and set it to 67, or the
musical note G. Leave the number next to beats alone
for now.

Repeat that last step three more times,

stacking each ‘play note x for x beats’ block

below the last. Now go through and change

the values for each note to 65, 64 and 62.
This sets our cat saxophonist to play four notes of a
simple downward scale.

If you
try
running
the
script now, by
clicking on it or
clicking the green
flag, you'll notice
that our cat keeps
getting bigger. Let's
stop that once he's
played his piece.
Click on the Looks
category, then drag
the ‘set size to x%'
block and the ‘go
back x layers' block in beneath the ‘notes’ blocks, but still
within the C shape of the ‘if then’ block. Set the number
in the first block to 100 and keep the number in the
second to 1.

That's one band member sorted, but we need
to add some others. Go to the Sprites area
and click the 'Choose sprite from library’
button next to New Sprite. Select the Dog2

When Sprites need to go to a certain place or move
around the Stage, we control where they go and what
they do using coordinates. There are two coordinates
for each position. The first, the x coordinate, tells the
sprite where to go horizontally, or left and right along
the Stage. The second, the y coordinate, tells the sprite
where to go vertically, or up and down inside the Stage.
x: 0, y: O is the centre of the Stage, so you use minus
numbers when you want a Sprite to go left or down of
centre, and positive numbers to place them up or right
of centre. The same goes when you want them to move,
which we'll look at later on.

sprite, then click OK. Hey presto, a dog appears on
the stage.

At this point, you're probably thinking “Oh
no, I've got to make a whole new script for
the dog!" Actually, you don't. Click on the
Cat sprite, then right-click on the block of
script and select Duplicate. You'll now have the whole
block attached to your pointer. Drag it down to the

Sprites area, move the pointer over the dog and click.
Now go back to the Scripts area, right-click on the extra
block of script and select Delete.

The script
you had
attached to
your cat is
now attached to your
dog, but we don't
want him to appear in
exactly the same place
or play exactly the
same notes through the
same instrument. That
means we need to
adjust the values — the
numbers — in the script.
Click on the dog sprite,
then go to the Scripts area and change the x: and y:

You can add any sprite you want to your band,

and alter the instrument they play and the notes
they play on it just by altering the values — the
numbers —in the ‘set instrument’ block and ‘play
note’ blocks. If you want, you can also add visual
effects to your sprites so that they change colour or
brightness when you touch them with the pointer.
Just drag a ‘change x effect by x' block into the
stack beneath the ‘go to front' block, then drag a
‘clear graphic effects’ block underneath the ‘play

note x for x beats' blocks.

values in the ‘go to’ block to -70 and -80. Just click on
the numbers and type in new numbers.

Now try setting
the instrument in
the set
instrument block
to 19, the marimba, then
change the four notes to 48,
50, 52 and 53. Our canine
chum now plays a cheerful
upward scale all of his own.

Now, keep
adding sprites
until your band is
assembled and
ready to play. You can keep
duplicating and dragging the
same script from one to the
next, remembering each time
to add a new starter position, a new instrument and a
new set of notes to play. Within minutes, your animal
band will be up on stage and ready to perform.

Animdadite a
Scratich cartoon

Now you know some of the basics, you're ready for something more
ambitious. How about a short scratch-powered cartoon?

How to
animate a
character

How to make
one sprite
trigger
actionsin
another

How to
duplicate
stacks to save
time and effort

cratch is perfect for creating animations, as
it has a library of characters, backdrops and
sounds built in, and all the script blocks you
need to make use of them. To see how it can
be done, we’re going to create a simple cartoon, but
you can use the techniques you learn here to make
something longer and even more exciting.

First, we need to get our sprites and
backdrops ready. Click on the ‘Choose
backdrop from library' button, select the
Castle4 backdrop and click OK. Next,
right-click on the cat sprite in the Sprites area and select
Delete. Now, using the ‘Choose sprite from library’

button, go and grab the Dog?2 sprite, then the Ghost2
sprite. You can find them faster by clicking on the
Animals and Fantasy categories on the left-hand side of
the Sprite Library window.

Click on the Dog?2 sprite in the Sprites area,
and let's get scripting. Click on the Events
category and drag the ‘when green flag
clicked’ block into the Scripts area, then click

on the Motion

category and drag

in the ‘point in

direction x' block

and the ‘go to x:x

y:y' block. Keep

the first block as

it is, but in the

second set x to

-224 and y to -118. This makes sure our dog is facing the
right direction — it becomes important later — and puts
him in exactly the right spot.

Here's how we animate him. Click on the
Control category, then drag a ‘repeat x' block
into the Scripts area. Don't attach it to our
stack right

away. Now go to the

Motion category, and

drag the ‘move x steps’

block into the C shape

of the ‘repeat’ block.

To control the speed of

the animation, we'll

use a sound. Go to the

Sounds category, and

pull in the ‘play drum x

for y beats' block. Set

the drum sound to 10

and the beats to 0.2.

Finally, go to Looks, and drag in the ‘switch costume to x'

block. Set the costume to dog2-b.

That sorts out one step of this two-step walk.
For the next step, simply repeat the sequence
of ‘'move x steps’, ‘play drum’ and ‘switch
costume to x' blocks, then make some
changes. Set the drum sound to 13 and the beats to 0.2,

To animate a character, you need to use a sprite with
more than one costume, where each costume can
represent a frame of animation. With our dog, for
example, each costume has the legs in different positions,
which means that swapping from one costume to
another will make it look like the dog is walking. The
more costumes you have for a walking animation, the
smoother and more realistic the animation will look.
The old video games that used sprites sometimes used
hundreds of frames just for one character's walks, runs
and jumps!

and switch the costume back to dog2-a. Finally, set the
value of the ‘repeat’ block — the number of times it will
repeat — to 4. That's our doggy animation block done,
but don't attach it to the main script block, as we'll need
it several times. Instead, right-click on it and duplicate it,
then attach that version.

It's time to give our canine star the creeps.
First, we'll add a noise. Click the Sounds tab,
then click the ‘Choose sound from library’
button - it's the first one on the left under
New Sound in the top-left corner. Click on the Effects
category, select the ‘door creak’ sound, and press OK.
Now, click the Scripts tab, and drag the Play sound x until
done block into the Scripts area and start a new stack
with it. Make sure the sound is set to the door creak.

Click on the Looks category, drag in the

‘Switch costume to x' block, and set the

costume to ‘dog2-c'. Click on the Control

category, and drag in the 'wait x secs' block.
Leave it set to 1. Pull in another ‘switch costume to x’
block, and set it to switch costume to ‘dog2-a’. Finally,
drag in a ‘think x for x secs’ block from Looks, and
change the “Hmmm...." To “I'm not scared of
ghosts...." and the time to 1 second.

Again, we'll want to use this block more than

once, so duplicate it, then drag the duplicate

into place at the bottom of your main script.

Give it a quick runthrough by clicking the
script or pressing the green flag button at the top of the
Stage area.

Now for the
clever bit.
We can save
ourselves
some work by reusing the
two stacks we've made.
Duplicate the animation
stack again and drag it to
the bottom of our main
stack. Then duplicate the
second stack — the one

that ends with ‘I'm not scared of ghosts..." —and drag
that below it. To add a little variety, click on the Sounds
tab, add a second sound, Spooky String from the
Instruments category, just like we did in step 5. Change
the sound in the second ‘I'm not scared..." block to the
Spooky String sound.

It's time to bring our second character into

play. In Scratch, you can use the Broadcast

block to send a message to another sprite, so

that they can do something in return. Go to
the Events category, and drag the ‘broadcast’ block to the
bottom of your stack. Click the arrow next to the box
with ‘message1’ in it, and select ‘'new message..." Type in
‘ghost’ as the message name and click OK.

We want our
dog to keep
on walking, so
duplicate and
drag the animation stack
to the bottom of the main
stack. Now click on the
ghost in the Sprites area.

In programming, the control flow is the order in which the individual statements or
instructions in a program will run, and control flow statements are instructions which
affect that order. We've already used the loop, which tells the program to run the same
instructions again and again, either forever or a certain number of times. The If x then x
block is another control flow statement, as it tells the program to do one thing if a certain
thing is happening, or not. The Broadcast and When | receive blocks used here are more
examples, as they tell one sprite to send a message that triggers an action from the other
sprite. The When | receive block then defines what that action is.

First, we need to set

up a simple script to

get him in the right

position. Drag in the

‘when green flag

clicked’ block, then the

‘go to x: x y: y' block.

Set x to 161 and y to

-64. Drag in the 'set

rotation style' block

and set it to ‘left-right’, then the ‘point in direction x’
block. Set the direction to -90. Finally, go to the Looks
category and drag in a 'hide’ block. We don't want our
ghost to be visible at first.

Now we need to decide what the ghost does
when he gets the message. Go to the Events
category, and drag in the ‘when | receive’
block to start a new stack. It should already

be set to ‘ghost’. For the sake of suspense, go to the
Control category and add a 'wait x secs’ block, setting
the value to 2. When our ghost appears, we want a
shock, so add a new sound, just as we did before. This
time we want the gong, which you can find in the
Percussion category. Once you've added it, click on
Scripts, then the Sound category, then drag in the ‘play
sound' block and set it to ‘gong’.

A simple script makes our

ghost appear. Go to the Looks

category, and drag in the ‘set x

effect to x' block. Set the effect
to ‘ghost’ and type in 250 as the value. Now
drag in the 'show' block underneath. The
ghost effect tells our scary spirit to remain
invisible. Next, go to Control and drag in a
‘repeat’ loop. Return to the Looks category,
and drag the ‘change x effect by x' block.
Set the loop to repeat 50 times, and set the
effect to ‘ghost’ and the value to -5. This will
make our ghost appear in spooky style.

That should scare our canine hero, so how
will he react? Again, we can use the
'broadcast’ block to find out. Go to the
events category and drag a ‘broadcast’ block

to the bottom of the stack. As in step 9, select a new
message and this time call it ‘'scare’. Now, click on the
dog sprite so we can define how he takes his shock.

Drag the ‘when | receive’ block from the
Events category into the Scripts area to start a
new stack. Set the message to ‘scare’. First,
our dog will scream, then jump in fear. Add a
new sound — screech from the Electronic category — then

click on the Scripts tab, then the Sound category. Drag in
the ‘play sound’ block and set the sound to ‘screech’.

For the jump, go to the Motion category and
drag in the
‘change y
by x' block.
Set the value to 20.
Next, go to the Looks
category, dragin a
‘switch costume to x'’
block from the Looks
category, and set the
costume to ‘dog-2c'.
Now go to the Control
category and drag in a
‘wait" block, and type in 0.5 to set the value. Finally, go
back to the Motion category, pull in another ‘change y by
x' block, and set the value to -20. Go to Looks, dragin a
second ‘switch costume to x' block, and set the costume
back to 'dog2-a’.

Finally, let's have our dog turn tail and run

away. Go to Motion, drag in a 'set rotations

style’ block and set it to ‘left-right’. Next, grab

the ‘point in direction’ block and set it to -90.
Now we can reuse the animation block we set up earlier.
Drag it into place at the bottom, then set the repeat value
to 20, and the beats value for the two ‘play drum’ blocks
to 0.02. This makes our dog run a faster, and sends him
speeding home to end our short cartoon.

Shark vs Food

More on using
conditional
statements
like, if and
then

How to make
and use
clones of
your sprites

How to use
operators and
get random
numbers into
programs

How to put
keyboard

commands
in aproject

n the last two projects, we’ve started working
with conditional statements. These statements
tell our program to proceed in one direction
or another, depending on whether a certain
condition is met. The ‘if, then’ block is a great
example. Imagine you have a runner waiting for
the starting pistol at the beginning of a race. The
‘if, then’ block might tell the runner if the starting
pistol fires, run as fast as you can. Otherwise,
hold your position on the starting blocks and
wait. Conditional statements work in exactly
the same way.

We’re going to use another conditional
statement in this next project, as well as discover
a handy method of making many sprites form
one and play with some more motion blocks and
sounds. It’s a tale of sharks, fish and overeating,
which we’re calling Shark vs Food.

We need to do some preparation first. Start a
new project, then right-click on the Scratch
cat in the Sprites area; now select Delete to
dump it from the project. Go to the Stage
area and click the ‘Choose backdrop from library’ button.
Find the Underwater 2 backdrop, click on it and press

OK. Now it's time

to find our hero.

Go back to the

Sprites area and

click on the

‘Choose sprite from

library" button.

Click on the

Animals category then select the Shark sprite. Click OK.

In the battle of Shark vs Food, only shark can win

Now to get our hero in position, not to

mention make him a more manageable size.

Make sure the Scripts tab is active, then drag

the old ‘when green flag clicked’ block into
the Scripting area. Now go to the Looks category and pull
the ‘set size to’ and ‘switch costume to" blocks into place
beneath. Set the size to 40% and make sure the costume
is set to shark-a.

Next, hit the Motion category and grab the

‘point in direction’, 'go to x: x y: y" and 'set

rotation style to' blocks. Drag them into

position at the bottom of the Script block.
Leave the direction set at 90 and the rotation stuck at left
- right, but set the x: and y: coordinates to 0 and 0. All
this block does is ensure that our shark starts each run of
the program in the same place, at the same size, in the
same costume and facing the right direction.

Now we want to pull in a Broadcast message

block from the Events category — you'll

remember them from the last project. Drag

the block into the Scripting area then click on
the message and type in ‘move’. This is going to call in a
new routine we'll continue using to move the shark
around the screen.

We can start this new
routine by dragging
in a ‘when | receive’
block from Events
and switching the message to
‘'move’. Beneath this, we need a
Forever loop, and inside this we
place two Motion blocks. The first
is a ‘'move x steps' block, which
we set to tell the shark to move
forward 1 step. The second is
an 'if on edge, bounce' block.
You probably know what that
one does.

That's the shark up and running, but what

about the food? Go back to the Sprites area

and click the 'Choose sprite from library’

button. Go to the Animals category and
select Fish3, then click OK. Our new fishy foodstuff will
appear on the stage.

We're going to do something clever with this
new sprite. Rather than add lots of fish and
script them individually, we're going to use
this one to generate clones. We can then
define how these clones behave and what will happen if
they come into contact with the shark. First, drag a ‘when
green flag clicked’ block into the Scripting area, and add

a ‘set size to" block from Looks beneath. Set the size to
30%. Now grab the 'hide’ block and drag this into place.
That keeps our original ‘'motherfish’ safely off the screen.

Now for the cloning bit. Go to Events and

pull in the ‘When space key pressed’ block,

leaving it at ‘space’. Go to the Sound

category and add a cheerful ‘play sound’
block, with it set to ‘pop’, then go to Control and add the
‘create clone of' block, leaving it set to ‘myself’. Now a
new fish will spawn every time you tap the spacebar
while the program is running.

It would be dull if all the fish looked exactly
the same and appeared in the same place,
but we can fix this as each clone is spawned.
Drag in a ‘when | start as a clone’ block from
Control, then go to Looks and add a ‘change colour
effect by’ block beneath it. Normally, we'd type in a
number here, but we can make the colour random to

keep our fish varied. Go to Operators and find the ‘pick
random’ block, then drag it in where the number should
be. Set the numbers to 1 and 100. Now, every time a fish
spawns, its colour will change by a random number
between 1 and 100.

We can repeat this trick when setting each

fish's position. Pull in a 'go to x: x y: y' block,

and put the same ‘pick random’ operator in

where you'd normally type the x and y
coordinates. Set the ranges from -240 to 240 for each
one. That ensures that a fish might appear anywhere on
the screen. Finally, go to Looks and add a ‘show' block.
This tells the fish to become visible once spawned,

coloured and in the right place. Try running the program
and pressing Space a few times to see.

Pull a Forever loop underneath the ‘show’
block. Now it's time for our next conditional
statement. The ‘if, then, else’ block tells the
fish to look for a particular condition, but if
it's not happening, to keep on doing something else. In
this case, we want to know if the fish is touching the
shark. Bring the ‘if, then, else’ block in from the Control

category, then go to Sensing and drag a ‘touching’ block
into the top slot. Change the sprite to the Shark.

We want two things to happen if a fish

touches the shark. First, we want to

broadcast a new message, which we'll call

‘chomp’. Second, we want the fish to
disappear, since it's been chomped. You'll find the
‘broadcast’ message block in the Events category and
the ‘delete this clone' block under Control.

What do we want the fish to do
otherwise? Swim around! Go to the
Motion category and drag an 'if on edge,
bounce' block, a ‘turn x degrees' block
and a ‘move x steps’ block into the bottom C-shape
of the ‘if, then, else’ block. Use another ‘pick random’
block in the 'turn x degrees’ block and set the numbers
to -2 and 4. Leave the ‘'move x steps’ block set to 5.
Now drag this whole block inside the Forever block

we put in place earlier. That's our fish clones ready
to go.

What happens

to the shark

when it eats a

fish? It's going
to chomp it and grow
bigger. Go to the Sprites
area and click on the Shark
sprite, then start a new
block of script with a ‘when
| receive’ message block. Change the message to
‘chomp’. Now go to Looks and drag in a ‘change
costume to' block, and set the costume to ‘shark-b’ — a
nice jaws-wide-open pose. Click the Sounds tab followed
by the ‘Choose sound from library’ button. Select the
‘Chomp sound under Animal’ button and click OK, then

drag a ‘play sound’ block into place and set it to ‘chomp’.

Now to make our shark grow. Add a Repeat
block and leave it set at 10. Go to Looks, and
add a ‘change size by’ block and leave it set
to 1.

The ‘I, then, else’ block is a more complex version of the
'If, then' conditional statement. It tells the program to
check whether a condition has been met then what to
do if it has, and also what to keep doing if the condition
hasn't been met. However, it only checks once and then
stops both checking and performing the ‘else’ actions.

If you want your Scratch program to keep on checking,
make sure you put your conditional statements inside a
‘forever loop' block.

Now add a second

‘switch costume’

block and set it back

to ‘shark-a’. Finally,

add a ‘broadcast’

message block and

set it to ‘'move’. This

will make our shark

grow steadily for a

brief time, then

switch back to its original costume and continue moving.
The more fish you spawn with your spacebar, the more
your shark will eat and grow.

That's a

problem

when our

shark gets
too big. We need
another key to make
him feel a little queasy
and shrink him back
to a more manageable size. That's exactly what this last
block of script puts into action. By now you know where
all the blocks are — just make sure you have the Shark
sprite selected, then drag them into the Scripting area.

Your first
Scratch game

It's time to take your Scratch skills up a notch or two by learning how to
code this simple arcade shoot-em-up game

How to put
together a
simple arcade
game

How to make
keyboard
controls work

How to use
variables to
control the
game

y now, you should be ready to tackle
something bigger, so we’re going to build
our first Scratch game. Old-school arcade
games are a good programming exercise.
They involve a lot of interaction, we all know what
the rules are and it’s fairly easy to piece together
how they should work. What’s more, you get
something you might want to play. This one is going
to be a shoot-em-up, where marauding invaders
turn up at the top of the screen and make their way
down, while a spaceship at the bottom of the screen
tries to dodge them or riddle them with bullets.

Before we start coding, let’s think about what
we need. Item one is the spaceship, which needs
to move left and right, and fire bullets. Item two
would be our invaders, and they need to appear at
the top of the screen and move downwards towards
the bottom. Item three would be the player’s
bullets, which need to travel upwards from the
spaceship towards the invaders. That means we
need to work with at least three sprites.

On top of this, we need to plan for three
possible interactions. First, if a starfish invader hits
the spaceship, the spaceship explodes and it’s game
over. Second, if the player fires the spaceship’s
cannons, a bullet needs to be released and travel
up the screen. Finally, if a bullet hits a starfish, the
starfish has to explode and the player’s score has
to go up. Now we know the basic elements, we can
get them all working in the game.

First, we need to get our most basic elements

together. Right-click on the Scratch cat sprite

to delete it, then go to the backdrop area,

click the ‘Choose backdrop from library’
button, then select the Stars backdrop. Now, we need to
get hold of our three sprites: the Spaceship, the Starfish
and Star2. For all three, click the ‘Choose sprite from

library’ button, find and select them in the library, then
click OK.

Click on the spaceship, and let's get scripting.
The basic
stack is pretty
simple. First,
we need the ‘when green
flag clicked’ block, then
we get a ‘set size to x’
block from the Looks
category, and set the size
to 25%. This makes our
spacecraft a more manageable size. Now we drag in a
‘go to x: x y: y' block from the Motion category, and set
x to 0 and y to -120. This tells the spaceship to start at
the bottom of the Stage.

We're going to use some variables to control
the score and where our sprites and any
clones appear on the screen. Click on the
Data category, then click the Make a Variable
button. Call the first variable ‘Score' and click on the little

round radio button to make it available ‘For all sprites'.
Now repeat this step twice more, creating one variable
called X Position and one variable called Y Position. Now
drag the ‘set variable to x' block into the Scripts area and
place it at the bottom of the stack. Set the variable to
‘Score’ and leave the value at 0.

Now to control the spaceship’s movement.
Drag in a 'forever’ block from Control and
place it at the bottom of the stack. Next, drag
an 'if then' block into the Scripts area and
place it on its own. Go to the Sensing category, and drag
the 'key x pressed?’ block into the space at the top of the
‘f then' block. Now go to Motion and pull in the ‘change

x by x' block. Set the key to the ‘left arrow’, and ask x to
change by -6. Now duplicate this little block, and set the
key to the ‘right arrow’, and ask x to change by 6. Stack
the two blocks together. The first ‘if' block tells the
spaceship to move 6 pixels to the left if you press the left
arrow, while the second tells it to move 6 pixels to the
right when you press the right arrow.

Drag in another ‘if then’ block. This time, we
need the ‘touching?’ block from the Sensing
category, and a 'broadcast message’ block
from Control. Set the ‘touching?’ block to
look for the Starfish sprite, and set up a new message,

which we'll call ‘Game over'. Attach this block to the
other two 'if then' blocks, then drag the whole stack
inside the C shape of the ‘forever’ block.

We need three more blocks to finish this script.
The first, ‘if on edge, bounce’ from the Motion
category, tells our spaceship to bounce off if it
hits the left- or right-hand edge of the screen.
The other two set the two variables we set up earlier. Go
to the Data category, and
drag the ‘set variable to x’
block in twice, making sure
each goes inside the
‘forever' block. Set the first
to X Position and the
bottom to Y Position, but
for the values go to the
Motion category and drag
in the ‘X Position block’ for
the first, and the 'Y
Position’ block for the
second. You'll find both at
the bottom of the Blocks
Palette. These variables will
store the current location of

the spaceship.
That's it for now for the spaceship; let's start
work on the
bullet. Click
on the Star2

sprite and start a new
stack with the ‘when
green flag clicked’ block.
Bring in a ‘set size to
x%' block and set it to
20, then a 'hide’ block.
Next, we need a
‘forever' block, and
inside that place an ‘i
then' block. Grab the
‘key x pressed’ block and
drop it into place, and
set the key to ‘space’.

Now click on the Sound tab, then the ‘choose
a sound from library’ button, and add the
laser2 sound from the Electronic category
to this sprite. Return to the Scripts menu,
and drag the ‘play sound' block into the ‘if then' block,
before setting the sound to ‘laser2’. Beneath it, stack
the ‘create clone of..." block and set it to ‘myself’, then a
‘wait x secs' block, which you should set to 1. This little
stack tells a bullet to fire when the space key is pressed,

which actually means making the laser2 sound and
creating a clone of the sprite. The 'wait’ block limits the
rate of fire.

This next script tells the cloned sprite where

to appear and what to do. It starts off with a

‘when | start as a clone’ block, then it's time

to use our variables. Pull out a ‘go to x: y:'
block from the Motion category, then go to Data and
drag the block for the X Position variable into the space
next to the x:. Now go to the Operators category and
drag out the block at the top with two circular spaces
separated by a plus. Drop it next to the y:. Now go back
to Data and drag the 'Y position’ block into the first
circular space, then click in the second circular space and
type 20. This tells our little bullet to appear wherever the
spaceship is, but just above it.

Next, stack the ‘show’ block, then a ‘forever’

block. Inside it, add a ‘change y by..., block

from the Motion category, and set the value

to 8. Beneath that, add an 'if then' block.
Grab another ‘touching?' block from Sensing, and set it
to ‘edge’. Now get a 'delete this clone’ block from
Control, and drag it inside the 'if then' block.

We have a

spaceship

that moves

and a bullet
that it can fire upwards.
All we need now is an
enemy to shoot at. Click
on the Starfish sprite
and let's get coding.
First, we create a new
stack under a ‘when
green flag clicked’ block. Pull in a ‘set size to..." block and
set the size to 33%. Add a 'hide’ block underneath. Next
comes a ‘forever’ block, and inside this we put a ‘create
clone of..." block, setting the sprite to clone as ‘myself'.
Beneath this, stack a ‘wait’ block, and set it to 1 secs.
This stack tells the program to create a new starfish
every second.

This next stack tells these starfish what to do.
First, a ‘set x effect’ block gives each one a
different colour. Set the effect to ‘color’, then
go to the ‘operators’ block and pull in the
‘pick random’ block. Enter 1 and 200 as the values. Next,

we want a ‘show' block, to make each Starfish appear.
However, we want each to appear in a different place.
Drag the 'go to x: y:' block into place at the bottom of
the stack, and pull another ‘pick random’ block in next to
the x:. Set the values in the ‘random’ block to -200 and
200, then set the y value in the ‘go to’ block to 148. This
tells each starfish clone to pop up anywhere at the top of
the screen, with a little space so that they don't appear
right at the sides.

This is where things get a bit complicated.
We want out starfish to keep travelling
downwards, unless it gets hit by a bullet or
hits the bottom of the screen. The secret is to
use two ‘if, then, else’ blocks, with one actually nested
inside the other. Drag a 'forever’ block to the bottom of
the stack, then put the first ‘if, then, else’ block inside it.
Next to the ‘if', put a ‘touching ?' block from the Sensing
category, and set it to ‘Star2’. Inside this block, drag the

‘play sound’ block with it set to ‘pop’, then go to the
‘data’ block and find the ‘change variable to x' block.
Change the variable to ‘Score’ and set it to change by 1.
Finally, pull a ‘delete this clone’ block into place. If a
bullet hits a Starfish, it will make a pop noise, increase the
score by 1, then disappear.

Now drag
a second
'if, then,
else’ block
inside the bottom
space of the first. This
time, pull a ‘touching?’
block into place next
to the ‘if" and set it to
‘edge’. Go to the
Control category, and
pull a ‘delete this
clone’ block into the
space underneath. If a
starfish hits the
bottom edge of the screen, it will now disappear.

Variables are a common element of any programming language. They work like the values
that we type into a block of script to tell a sprite to go to a specific point or a ‘repeat’
block to repeat ten times. But with a variable, the number is stored elsewhere by the
program, and retrieved every time a block asks for it. In effect, the number gets stored in
a box with a label. We tell the program what to store in the box, and it only has to ask for
the label to use whatever number is in it.

This has a lot of advantages. First, you can share a variable between different parts
of the program. For example, you could use a variable to track the horizontal position
of one sprite so that the program knows when another sprite is directly above it. We'll
use this with the ‘X Position" block when we want our spaceship to fire bullets. We can
also change and make calculations with variables. We could control the size of a series of
oranges by defining a variable called size, then making the number a little bit bigger with
every orange. The more complex your program is, the more you'll want to use variables,
and the more useful they become.

All we

need

to do

now is
get our starfish
moving. Just get a
‘changey by...’
block from the
Motion category
and drag it into
the space
underneath the
bottom X. Set the
value to -2.

Finally, we need to sort out what happens

when our spaceship gets hit by a falling

starfish. Remember the ‘Game over' message

we set to broadcast earlier? Create a new
stack on any of the sprites with a ‘when | receive
message' block. Set the message to ‘Game over'. Drag in
a 'say x for x secs' block, and set it to say GAME OVER
for two seconds. Then go to the Control category, and
grab a ‘stop’ block. Leave it set to ‘all’. If your ship is now
hit by a starfish, the game will stop. Not very exciting, we
know. If only there was something we could do...

Remix
the game

Not satisfied with your finished game? The great thing about programming
Is that you can go back and fix it, or even make it more spectacular!

alk to any programmer and they’ll tell you
that few projects are ever really finished
- there’s always something you can do to

How to improve them. With this in mind, we’re
change or going to take another look at our first Scratch game.
remix your It’s functional and playable as it is, but what would
Scratch it be like if we changed the graphics and added
projects music, or made it a little more exciting? It’s time to
find out.
How to add
music to a Load up the game
game You can load any project you’ve already created
by clicking on the My Stuff folder in between the
How to edit Messages icon and Your profile icon on the Scratch
sprites a nd web page. You'll see all your existing projects You can load any project you've already created by clicking on
costumes listed. Alternatively, you can click on the File menu the My Stuff folder.
in any open Scratch project, then select Go to My
How using Stuff. Open a project from the list by clicking onit, ~Transform your spaceship

variables can

transform
your game

then click the See Inside button to go back, edit and
remix it.

Click on Go to My Stuff on the File menu in any open Scratch
project to see all your existing projects listed.

There’s nothing wrong with Scratch’s built-in
spaceship, but was it really built for a fast-paced
action game? No. If you want to change the way it
looks, you have two options. The first is to create a
brand-new sprite. Next to the ‘Choose sprite from
library’ button at the top of the Sprites area there’s
a paintbrush button: ‘Paint new sprite’. Click this
and you’ll bring up the Costumes Editor, where you
can use the tools provided to draw a new sprite.

Once you’'ve finished, clicking on the blue 7’
symbol in the top left of the sprite in the Sprites
area will bring up a window where you can type
the new sprites name, set its starting direction
(which way it faces) and set whether it can be
rotated so that it will face in any direction, only
face left or right, or only face in one direction,
using the three buttons marked rotation style.
Your new sprite will be saved when you next save
your project. The only downside of this approach
is that youw’ll need to copy all the scripts for the

on it in the Sprites area, then click the Costumes
tab above the Blocks Palette. Click the ‘Paint new
costume’ button above the two existing costumes,
and start drawing. When you’re finished, you can
just delete the old costumes by clicking on them in
the list, then clicking the x on the right-hand side of
the highlight box. Alternatively, you can just ensure
your sprite is highlighted in the list of costumes,
then add a ‘Switch costume to x instruction at

the start of the Sprite script, and set it to the new
costume.

Add some animation

We can make our starfish even more fearsome by
adding a little animation to the Sprite. All it takes
are a few additions to the Starfish script. Click on
the Starfish sprite in the Sprites area, then on the

Why not give your exisiting spaceship a new costume?

old spaceship over to the new one, and change
any references made to the spaceship to the new
sprite’s name.
The alternative? You can give your existing
Spaceship sprite a new costume. Simply click The starfish now turn around and around as they make their descent.

Scripts tab to edit its scripts. We need to adjust
its default behaviour - what the sprite does when
it isn’t being touched by a bullet, and it hasn’t
touched the edge of the screen. See where the
block says ‘change y by -2’? That’s it.

We’re not going to use different frames of
animation this time. We just want our starfish
to turn around and around as they fall. We do
this by adding a ‘turn x degrees’ block below the
‘change y by -2’ block, and set the rotation to ‘5.
Our starfish now turn smoothly as they make their
menacing descent.

Make a new enemy

Our starfish put up a decent fight, but any good
arcade game needs more than one enemy, so you
might want to add this killer super-starfish.

You can start off by duplicating the original

starfish. Click in the ‘I' in the top left of the

highlight box that appears when he's selected

if you want to change his name. Here, we're
calling him SuperStar. It's once you get to the scripts,
however, that you need to make some changes. First,
take a look at the ‘when Green flag clicked’ stack. This
script is still designed to keep on producing clones, but
here we've put in a ‘pick random’ block in the ‘wait’

block instead of the usual 1 second value. This means a
new super-starfish will now spawn at random intervals
between 10 and 25 seconds, making him a more
dangerous and unpredictable opponent. We've also
changed the size of the sprite to just 25%, to make him
smaller and harder to hit.

Look at the ‘when | start as a clone' stack,
and you'll see more changes. First, we've
added a sound to the sprite: the space ripple
from the Electronic category. If we place this
here, before the ‘forever’ loop, this spooky sample will
play every time a super-starfish appears. We've also
created a new variable called ‘colour’, which we're using
for a cool colour-change effect. We've added a ‘set color

effect to x" block to the start of the ‘forever’ loop, and set
the value to use the Colour variable. By putting a ‘change
colour by x' block at the end of the loop and setting it to
5, we can make the clone change colour every time its
script runs through the loop, which happens pretty fast as
he moves down the screen.

Finally, this enemy has a different style of
movement. He mercilessly hunts down our
player's spaceship. We do this by replacing
the old ‘change y by -2" block at the bottom
of the second 'if, then, else’ block so that it uses a ‘point
towards' block, set to the Spaceship sprite, then moves 4

steps towards that target. This tells the sprite to keep
pointing at the spaceship, wherever it's moving, then
move steadily towards it. Our spaceship will now have to
shoot it to survive.

To make super-starfish a credible threat, we
also need to change the spaceship’s script. If
you look, we've added a fourth ‘if then' block
to the stack, identical to the one that looks to
see whether the spaceship is touching the original starfish.

Set this to the SuperStar sprite, and it's game over if our
spaceship makes contact with our super-starfish.

Making Game Over mean something
At the moment, the Game Over message is a bit
of a damp squib. For a start, we could make our
spaceship explode, using the same pixelate effect
we used in our “When Crabs Collide’ project.
Look at the new script, and you can see that
we’ve changed the ‘stop’ block to read ‘other
scripts in sprite’, then added the screech sound
and a ‘play sound’ block to play it. We then run

Have a go at making the
Game Over message a bit
more exciting.

Even better, why not add
some music in the form of the
classic funeral march?

a short loop with a Pixelate effect that turns our
spaceship into a pile of chunks. We then add three
‘say’ blocks, each one running for two seconds. The
first says ‘Game Over’, the second says ‘You Scored’,
and the third looks at the current value of the Score
variable and reports the score. Add a ‘stop all’
instruction at the end, and it’s a much better

Game Over.

Music

Still, we could make it even better. This little stack
adds the classic funeral march used by so many
vintage arcade games. Just stick it in between the

Pixelate animation and the Game Over messages,
and it should work pretty well.

Make some waves

Classic arcade games used to have aliens that came
in waves, increasing the difficulty as the player
goes on. How can we make this happen here? Using
variables, of course.

We use one — wave count — to work out how

many starfish the player has destroyed. When

the count hits 20, the game starts the next

wave. We then use another two — spawn rate
and speed - to tell the program how quickly to spawn
new starfish, and how fast to make them move.

Once we've made our variables, we need to
put them in a handful of scripts. First, go to
the Starship script and add a ‘set x to x" block
from Data, setting it to wave count and 0.

Next, go to the Starfish sprite, and
underneath the ‘change score by 1" block put
in an identical block reading ‘change wave
count by 1'. Underneath this, we add an 'if
then' block from the Control category, with an ‘x=x’'
block from the Operators. Drop the Wave Count variable
into the first space, then type 20 in the second. In the
space underneath, put in a ‘broadcast message' block,
with a new message called ‘New Wave', then a new 'set

wave count’ block to reset the Wave Count variable to
0. This tells the starfish to keep adding 1 to wave count
every time a starfish is destroyed, and when the wave
count hits 20, to broadcast a new wave message. Then
it resets the wave count to O.

Now what happens when the New Wave
message is broadcast? Well, first we add a
whole new block to the Spaceship sprite,
which tells it to say ‘'New Wave Incoming!’
when it gets the message. Second, we need to make a
few more changes to both Starfish scripts. In the first

script, you can see we've added new ‘set x to x' blocks
from the Data category to set the spawn rate to 1.5 and
the speed to -2. This tells the game to start off by
releasing a new starfish every 1.5 secs, with the speed
pretty slow. If we change the value in the ‘wait’ block to
use the Spawn Rate variable, it will use this to decide how
long to wait.

In the second script, we now need to
change the ‘change y by -2’ block near
the bottom to ‘change y by the Speed
variable’. This allows us to speed things

Here’s our improved game
with its waves of starfish that
increase in difficulty as the
player goes on.

You can carry on
enhancing the game

if you want. Why not
change backgrounds
with each new wave,
add a new intro music
to the game, or add a
high score chart? Don't
worry if you don't know
how to do these things
right now. We'll be
covering them in later
projects.

up when we have a new wave of starfish.

If we now go back to the ‘when | receive

New Wave' stack in the Spaceship sprite, we

can set the Speed variable to change by -0.2,

slightly increasing the speed our starfish
move at. We can also add another block to change the
spawn rate by -0.2, increasing the rate at which our
starfish are spawned. The game will now get more
difficult with each new wave.

