Animate
stories

Contents

SECTION 1
Start coding

8 Why learn to code?
See why coding is a vital skill

10 Introducing Scratch
The perfect way to start coding

12 Scratch basics
Taking a tour around Scratch

14 My first Scratch program
Say “Hello World"” with a magic cat

16 The animal band
Get interactive with this musical show

16

20 Animate a Scratch cartoon
Make your own spooky cartoon

24 Shark vs food
Learn to use clones to save you time

28 Your first Scratch game
Build an addictive shoot-em-up

32 Remix the game
The game is good. Let's make it perfect

SECTION 2
Build your skills

4.0 Fun with Scratch graphics
Generate amazing patterns

15

46 Paint with Scratch
Make your own painting app

52 My Scratch racing game
Take this top-down racer for a spin

60 My Scratch quiz
Build your own brilliant quiz

68 My incredible Scratch app
This monkey-themed timer is great fun

72 Put yourself in the program
Webcam graphics and motion controls

78 Share your projects
Showcase your work to the world

80 Remix your projects
Turn Scratch projects into something new

82 My awesome Scratch game
Harness even more advanced techniques

90 Your next steps in coding
Where next on your coding adventure?

BASIC basics

94 Introducing SmallBASIC
Take your first steps into BASIC

96 Preparing to program
Installing and using SmallBASIC

104

98 My first SmallBASIC program
Coding doesn't get any easier than this

100 Sentence generator
Make crazy sentences from scratch

104 Create your own quiz
Code your own maths quiz game

110 SmallBASIC graphics
Learn about SmallBASIC's graphics
functions

SECTION 4
The next level

116 Introducing Visual Basic

Looking for more power?
Time to get serious about coding

122 Building your first Basic game
Have some fun coding your first
blockbuster game

132 Building a Visual Basic app
Create a working slideshow app

14.0 Where do you go next?
More projects, more languages, more code

144 GLOSSARY
All those vital coding terms defined

146 RESOURCES

Section 2

Build

your skills

You'll discover how to do more with Scratch
graphics, and how to create painting apps, racing
games and other programs. Most importantly, all
the knowledge you gain here will be relevant later
on when we explore more complex ways to code.
Sounds difficult? It won't be. The more you learn
about coding, the more logical it becomes, and
before long you'll be prepared for what comes next.

By now, you've encountered many of the basic
building blocks of computer science, and put

them to good use in simple projects. Scratch’s
drag-and-drop approach is ideal for these first
steps into coding, but it's capable of a lot more.

In this chapter, we're going to look at some more

advanced Scratch programs, using variables,
one-dimensional arrays, subroutines and more.

Page40 Page46 Page 52

Fun with Paint with My Scratch
Scratch Scratch racing game
graphics

Master Scratch's
lists to make your
own racing game
with rival racers

Create your very
own Scratch
painting program,
complete with tools

Get creative with
Scratch's really
useful Pen tool

Page 80

Remix your
projects

Page 72
Put yourself in
the program

Page 78
Share your
projects

If you can inside
aproject, you can

change it and even
make it better

Use your webcam
to put your face
in a program and
control motion

Community is an

important thing in
Scratch, together
with game sharing

Page 60
My Scratch
Quiz

Harness the power
of lists further to

build your own
brilliant quiz

Page 82
My awesome
Scratch game
Use all your new,
amazing Scratch

skills to make a
retro arcade game

Page 68
My Incredible
Scratch App
Learn how to build
an app with this

fun-filled monkey-
themed timer

Page 90
Your next
steps in
coding
Where next on

your programming
adventure?

Fun with Scratch
graphics

Scratch can do a whole lot more than push spaceships and starfish around
the screen. It's time to discover what other exciting features it has to offer

o far, we’ve used backgrounds, speech
bubbles, thought bubbles and sprites to fill
the screen, but Scratch also has another

How to use way of handling graphics: the pen. This is
the penin a really useful tool, which lets a sprite work as a
Scratch pen, drawing on the screen as it moves. You can set
whether the pen is drawing or not, and change the
How to colour, shade and width of the line. What’s more,
combine you can control all these things - just like you
Operator would the sprite - using script blocks, and even use
blocks with variables to alter the settings as the program runs.
variables Here, we're going to show how versatile the pen
is by making a random pattern generator program,
How to take which takes a series of instructions, including a
input from few random numbers, to create a whole range of
users, then fascinating, multicoloured patterns. And once click the Paintbrush icon to ‘Paint new backdrop’. Click
work with it we’ve got the random pattern generator working, the Paintpot tool to select ‘Fill with color’, then choose

we’ll show you how to customise the program to
give the user more control.

If it's there, start by deleting the Scratch cat
sprite. Now, our first job is to create a

the round gradient fill from the group of four buttons,

bottom left. Choose a nice light blue colour by clicking on
it in the Colour Palette, then just click in the middle of the
screen. Hey presto, one simple but attractive background.

really simple background. Go down to the Next, we

Backdrops area next to the Sprites area and need an
incredibly
simple

sprite. Go to the
Sprites area and click
the Paintbrush icon
there to ‘Paint new
sprite’. Click the Brush
to select it from the
toolbar on the left,
then choose a bright
red colour from the
Colour Palette. Move
the line-width slider
to the left of the Colour Palette to get a slightly thicker

line. Now, all you have to do is put a single, tiny dot
right in the faint cross in the middle of the Painting

area. Don't worry if you miss. You can either click

the Clear button at the top and redo it, or the ‘Set
costume centre' button (the last of the three at the top
right of the Costumes area) to move the cross. Either way
works.

We've built our sprite. It's time to put it to
work. This is another project where we can
use clones to get a lot of work done very
quickly, so we start off building a script to set

our master sprite up, then spawn them. First, pull in the
‘when green flag clicked’ block, then click on the Pen
category. We need to reset the Stage and the status of
the pen every time the program starts, so drag in a ‘clear’
block, then a ‘pen up’ block, then a ‘set pen size to...’
block and finally a ‘set pen color to..." block.

Enter 2 as the value in the ‘set pen size to’

block, then go to the Operators category and

drag a 'pick random x to x' block to the space

in the ‘set pen colour to’ block. Set the values
to 0 and 199. This will give us a random starting colour
for each pattern we generate. Now go to the Motion

category and pull in a ‘go to x: x y: y' block, then a ‘point
in direction’ block. Set the x and y coordinates for the
first block to 0 and O, then drag in another ‘pick random
x to x' block and drop it on the space in the ‘point in
direction’ block. Set the values to 1 and 360.

Our sprite will now start off each run in the
middle of the Stage, with a random pen
colour, ready to move off in a random
direction. To control where it moves to next
and to make sure it keeps on moving, we're going to use

variables. Click on the Data category and make three new
variables, which we'll call Angle, Length and Reps.

You'll see three counters appear on the screen. Click the
checkbox next to each variable if you want to switch its
counter off or on again.

We now need to set the starting values for the
first two variables. Drag in two 'set variable to
X" blocks and stack them underneath the

existing stack. Change the first to read ‘Angle’

and 1, and the second to read ‘Length’ and 10. Now go
to the Control category and pull in the ‘create clone of'
block, and make sure it's set to clone ‘myself'. Finally, go
to Looks and drag in a 'hide" block.

We now start a new stack with the ‘when |
start as a clone' block from Control. This
block will control how the individual clones
behave. To make an interesting pattern, we
want each clone spawned to behave differently, so we
pull in three blocks from the Data category to affect their
behaviour. First, we need two ‘change variable by x’
blocks, then a ‘set variable to x' block. Set the first block

to ‘Angle’, the second to ‘Length’ and the third to ‘Reps’.

We want each variable to change by a small
amount each time, so that each clone does a
slightly different thing. Go to Operators and
drag in three ‘pick random’ blocks, placing

each one carefully in the space where the value should go

in our three data blocks. The Angle block needs to be set
to -10 to 20. The Length block needs to be set to 10 to
40. Finally, the Reps block needs to be set to 10 to 80.

When you're done, add the next block: ‘pen down’, from

the Pen category.

Next, we need to go to the Control category

and pull out a ‘repeat’ block. Normally, we'd

set this block to loop the instructions we put

inside it a set number of times. This time,
however, we're going to control the number of times it
loops using a variable. Go to the Data category, find the
block for our Reps variable, and drag this into place on
the ‘repeat’ block.

To produce its patterns, our pattern generator
continuously changes the length of the lines
it draws. If those lines get too long, however,
you just end up with a dull pattern. We
control the length using an ‘if, then, else’ block. Drag it

inside the C shape of the ‘repeat’ block, then go to the
Operators and find the block that reads ‘x > x'. This
operator is looking to see whether the number on the left
is larger than the number on the right.

Grab the block for the Length variable from
Data, and drop it in the left-hand space. Now
type 59 in the right-hand space. Next, drag
the ‘set variable to x’ block out and drop it
into the space underneath. Change the variable to
Length, and change the value to 1. You're telling the

program to look at the Length variable, see if it's over 59,
and, if it is, to reset it back to 1.

If it's under 59, however, we want the

program to increase Length by 1. Get the

‘change variable by x' block and drag it into

place in the space beneath the ‘else’. Set the
value to 1.

Now it's time for the bit that tells each
clone where it needs to draw. First, go to
the Motion category, and drag a ‘move x
steps’ block into the stack, making sure
that it fits underneath the 'if, then, else’ block, but
above the bottom part of the ‘repeat’ block. Then,
underneath it, place a ‘turn anticlockwise x degrees'’

Scratch's pen lays down a line as the sprite it's attached to moves, and you can use the
Pen blocks to control when the line is drawn or not, and also how it will look. Drag the
‘pen down' block into a sprite, and the pen will draw a line from that point on. Drag the
‘pen up' block into play, and the drawing stops. Three blocks control the pen's colour.
The one with a block of colour at the end will set the pen to the currently selected colour,
while the ‘set pen colour to x' block, where x is a value or a variable, will set the pen to
the colour associated with that number. The ‘change pen colour’ block can then adjust
that number, moving the colour towards one end or the other of the colour spectrum. The
‘set pen shade' and ‘change pen shade’ blocks set the pen to the brightest (highest) or
lowest (darkest) shades of the colour, so that you'll get a bright blue line or a nearly black
or white one, while the ‘set pen size' and ‘change pen size’ blocks alter the width of the
line to make it thinner or thicker.

block, which is the one with the arrow pointing to
the left.

We actually control these
blocks using the variables
we made earlier. Go to the
Data category, and drag
the Length variable, where the value
should go in the ‘'move’ block, and the
Angle variable where the value should
go in the 'turn’ block. The program looks
at the current Length, and moves that
many steps in its current direction. It then
looks at the current Angle, and changes
its direction by that amount before
moving on.

All that

code will

create

just one
line, so we need to
keep creating clones
to make more lines.
Go to the Control
category, and find
the ‘create clone of
x' block. Drop it in
place underneath the
last two blocks, and
make sure that it's
set to ‘myself'.

Now we need to make sure the line keeps

changing colour. Go back to the Pens

category, and find the ‘change pen colour by

x'" block. Drag this in and drop it beneath the
‘create clone’ box, and you'll have a working pattern
generator. Give it a spin!

As it is, our pattern generator is working
pretty well, but wouldn't it be great if we
could influence how it works and the patterns
it makes? We can. There are a couple of ways
of doing it, but here we're going to use Scratch’s ‘ask and
wait' block. To make it work, we're going to need to do a
bit more scripting. First, go to the Sensing category and

The pattern generator looks complex and does some clever things, but actually how it
works is very simple. Each clone appears, draws a line of the current length in the current
direction, then turns according to the current angle. It then creates a new clone of itself
and changes the colour of the line. The clone then repeats that process, and the Reps
variable decides how many times each clone does this before it can stop drawing, turning
and cloning. As each clone ends up spawning so many other clones, you end up with lots
of clones all drawing at once, but the way the Length and Angle variables are set and
changed prevents the lines from going off in completely random directions. You end up
with a pattern that's random enough to be unpredictable, but not so random that it's just
a total mess.

look for the ‘ask and wait' block. By default, it has the
question ‘what’s your name?'.

Drag it to the scripts area and into the ‘when

green flag clicked' stack, putting it just above
the orange ‘set Angle to 1" block. Change the
text to read ‘Enter Starting Angle'.

You can get a better idea of what the

program is doing by adding a Show block
to reveal the Cone sprites moving as they draw
and adding a ‘wait’ block to the main ‘repeat’
loop to slow things down a little. Put a ‘hide’ at
the bottom of the stack so you don't spoil the
finished pattern. Give it a try!

Now go back to the Blocks
Palette and find the
‘answer’ block. Drag this
to the 'set angle to’ block,
and drop it where you can currently
see the 1. When the program runs
from now on, it will ask the user to
‘Enter Starting Angle’. When the user
types this in and presses the Enter key,
the program stores what they type as
a kind of special variable — the Answer.
By telling the ‘set angle to" block to
use the answer, we tell it to look at
and use whatever's stored in Answer.
Only one Answer can be stored this
way at any time, so we need to use it
before we can ask another question.

You can also see what happens when the

shade changes instead of the colour. Simply
drag out the ‘change pen colour by 1’ block and
replace it with a ‘change pen shade colour by...’
block, setting it to -1 to keep getting darker, or 1
to keep getting brighter.

You can also try messing about with the

line width. To do it, we've created a new
variable called Width, and set the pen size to
use that variable in the ‘when | start as a clone’
stack. We then use an 'if, then, else' block, just
like we did with the Length earlier, to control the
maximum setting. Take a look at the stack, and
see if you can work out how it works.

Now go to the second stack — the one that
starts with ‘when [start as a clone’ — and find
the block that reads ‘set Reps to pick random
10 to 80'. Drag out the 'pick random’

operator, and replace it with the ‘answer’ block. The
number of repetitions won't be random anymore, giving
the user more control over the pattern. While you're
there, it's worth changing the values in ‘change Angle by
pick random to -5 and 5'. Again, this makes it easier to
influence the finished pattern. Try running the program
with different combinations of Angle and Repetitions to
see what happens.

We could
repeat
these same
three steps
for the Length variable,
but as this already has
a limit set on it, the
change wouldn't make
much difference to the

program or the

pattern. Instead, it
makes more sense to
change the number of
repetitions. Drag in a
new ‘ask and wait' block below the ‘set angle to’ block,

and change the text to Enter Repetitions.

Paint with
Scratich

In this project, we're going to push Scratch further than we ever have before
by creating our very own Scratch painting program

How to create

cratch gets used a lot to make games,
quizzes and funny cartoon animations, but
with a bit of thought it can be used to make
almost any kind of program. We’re going

‘when green flag
clicked’ block. Then,
go to the Pen
category and drag

sliders to to prove that with this next project by building a out the ‘clear’
control simple painting program, complete with basic tools block. This clears
variables to paint lines, a choice of different colours, and the screen every

even tools to stamp and paint with pictures on the time our paint
How to use page. It might sound like a lot of hard work, but program is run.
sprites as with Scratch’s built-in features it’s easier than Now go to Control,
buttons youd think. and drag a ‘forever'

block into place. If
How to you remember, this block tells the program to keep on
‘stamp’ doing whatever instructions we put inside it for as long as
sprites with this stack is running.
the pen
Before we go on, we

How to need to create some
transfer variables. We're going to
costumes use these to control the

from sprite to
sprite

Start off by deleting the Cat sprite, then

create a new Dot sprite, just like we did in the

last project. Click the ‘Paint new sprite’

button at the top of the Sprites area. When
the Costume Editor loads, increase the line width to the
halfway mark, then stick a small blob of paint smack in
the centre of the crosshairs. It helps if you press the
magnifying glass to zoom into 400%.

That's our main sprite done, so click on the
Scripts tab and let's get scripting. First, we're
going to make our pointer work like a
paintbrush. Our stack kicks off with the

colour and shade of the paint our
brush lays down, as well as the size
of the brush. For each one, go to the
Data category and click the Make a
Variable button, then enter the name
of the variable, and set it to work

‘For all sprites’. Call the three variables Colour, Shade and
Size. You can leave the checkboxes next to Shade and
Size ticked, but untick the one next to Colour.

Go over to the
Stage area,
and right-click
on the Shade
counter. Select Slider from
the dropdown menu that
appears, and your Shade

counter turns into a slider, where you can move the slider
left and right to alter the value of the Shade variable. You
can try it right now if you like, but the really cool thing is
that anyone using the program will be able to do the
same thing. Now drag the new Shade slider over to the
top-right corner of the screen.

Do the exact same thing with the Size
counter, then drag the new slider into place
beneath the Shade slider. Now right-click
again on the Shade slider, and select ‘Set

slider min and max' from the menu. Enter 1 as the
minimum and 100 as the maximum. Do the same with
the Size slider, and enter 1 as the minimum and 20 as the
maximum.

Right, let's get back to our script. Go to

Control and find the ‘if, then, else’ block, and

drag it into place inside the C shape of the

‘forever’ block. Now go to the Sensing
category, find the ‘mouse down?' block, and drag it into
the space after the ‘if".

We've set this script to keep an eye on the

mouse button, and see if it's being pressed or

not. Now we need to tell it what to do if the

mouse button is pressed. First, go to Motion,
and drag in the ‘go to x' block. It should be set to

mouse-pointer already. Now go to the Pen category, and
drag in the ‘set pen color to’, ‘set pen shade to’ and ‘set
pen size to' blocks, followed by the ‘pen down' block.

Instead of

setting

these

blocks
manually, we use our
variables. Go to the
Data category and
drag the Colour
variable to the value in
the ‘set pen color to’
block. Do the same
with the Shade variable
and the ‘set pen shade
to' block, and the Size
variable with the ‘set
pen size to" block.

When the
mouse
button is
pressed, our
sprite will now draw a
line using our current
settings for Shade, Size
and Colour. And if it
isn't, drag the ‘pen up’
block from the Pen
category and place
it inside the space
underneath the ‘else’.
Give the script so far a
try. You'll be able to
draw a black line by
clicking and holding the
mouse button as you
move the mouse around
the screen. You can
even change the width
of the line by sliding the
Size slider up and down.

It works, but wouldn't you like some colour?
We can fix that by making a new sprite. Click
the ‘Paint new sprite’ button and use the
Rectangle tool to draw a small square over

the crosshair. You can either

fill it with the ‘Fill with color’

tool or click on the filled

shape option in the bottom

right of the Costume Editor.

Remember, you can always

use the Set Costume Centre

tool later if you don't quite

get it right.

Click on the Scripts tab, and we can start

scripting what this sprite will do. First, we

need to reposition it, so grab a ‘when green

flag clicked’ block, then attach a ‘go to x: x y:
y' block to it. Set x to -220 and y to 160.

Now create a second stack, starting with a

‘when this sprite clicked’ block. Once that's in

place, go to the Data category and pull in

two ‘set variable to x' blocks. Set the first one
to ‘Colour’ and 0, and the second one to ‘Shade’ and 0.
In effect, we've turned this sprite into a button. Click on
it, and it turns the colour of the line to black.

That's

great, but

what

about the
colours? Well, we
could keep making a
new sprite for each
colour and create a
brand-new script for
each, but why work
when a little scripting
will do the work for
us? We can keep duplicating this sprite, and make a few
changes for each version. Before we duplicate anything,
look at the ‘'when Green flag clicked’ sprite. Go to the
Operators category and drag the ‘x — x' block into the
'Go to x: x y: y' block, where the 160 is at the moment.
Set the first value to 160 and the second to 0.

Now go to the Looks category and pull in the
‘change x effect by x' block twice. Set the
first one to ‘color’ and set the value to 0, and
the second one to 'brightness’ and the value

to 0. We don't actually want these two blocks to affect
this sprite, but they make things a lot easier once we start
duplicating it. Now right-click on the sprite in the Sprites
area and select Duplicate.

Just click on the new Sprite to highlight it,
then it's time to adjust the script. By changing
the second value in the Operator block in the
‘go to x: x y: y' block, you can quickly change
the vertical position of the sprite. Setting it to 25 works
well in our example. Now you need to change the colour

of the sprite, by changing the settings for the Color and
the Brightness effects. Here, we want a red, so set the
Color effect to change by 1, and the Brightness effect to
change by 100.

Now we just need to go over to the ‘when
this sprite clicked’ stack and set it up to
match. Set the Color to 1, then set the Shade
to 50. Now, when you run the script, the

bottom of our two black square sprites will now look red,
and produce a red line when clicked.

The beauty of doing things this way is that
you can keep on duplicating the last sprite,
then change the values to alter its colour, and
the colour of the line you'll get once you click
on it. Change the value of the y: position, increasing it by
25 each time, then change the Color and Brightness
effects to bring in a new colour. Finally, set the Colour
variable in the second stack to match. It's best to leave

the Shade variable set at 50, and the Brightness effect at
100. To create this little palette, we've set the rest of the
colours to 30, 50, 90, 120 and 150. You can always
choose different colours, or duplicate and change as
many sprites as you have room for.

It's not just lines you can paint, however. You

can also use the Stamp block to paint with

the sprites themselves. First, you need to add

a new sprite, either by choosing one from the
library or by painting one yourself with the aid of the
Costumes Editor. Here's one we made earlier.

Now right-click on the costume in the list just
to the left of the Costume Editor and select
Duplicate. Drag the duplicate over Sprite 1
where it sits in the Sprites area, then release
the mouse button. This copies and transfers this costume

over to Sprite 1 — your main painting sprite. You'll need
it later.

Click the Scripts tab. This sprite needs two
stacks of script. The first, which starts with
‘when green flag clicked’, changes the size of
the sprite then moves it so that it fits neatly
underneath your Colour Palette. You might need to try
different values here before you get it right. The second
tells the program to broadcast a message when this sprite

is clicked. Here, we're calling it ‘smiley’. Again, you're
transforming a sprite into a button.

But

what

happens

when
that button is
clicked? Well, go
back to the first
sprite you made.
We need to make
some changes to its
script. Click on the
‘forever’ block
underneath the
‘when green flag clicked’ block and drag the rest of the
stack away from the top two blocks. Now you need to
add two more blocks to the top stack: a ‘switch costume
to’ block and a 'broadcast message' block. The costume
should be set to ‘costume1’, and you need a new
message, which we'll call ‘normal brush'.

Now get a ‘switch costume to’ block and
place it on top of the rest of the stack.
Change the costume to read ‘costume1’.
Next, get a ‘stop’ block from Control, set it to

‘other scripts in sprite’, and place that on top. Finally, get
the 'when | receive message' block from the Events
category, and click it into place on top. Change the
message to ‘normal brush’. This script now changes
costume to the first costume and draws lines when it gets
the normal brush message, just like it did before.

Start a new stack with the ‘when | receive
message' block, but this time change the
message to read ‘smiley’. The stack
underneath is a variation on the one we've

already created to draw lines, but this time it uses the
‘stamp’ block. This places a copy of the current costume
everywhere you click, or draws with the costume if you
hold down the mouse button. Note the operator with the
Size variable in the ‘set size to' block. This allows the Size
slider to control the size of the stamp, but adjusts for the
fact that the ‘set size to’ block works differently to the
‘set pen size to’ block.

Finally,

you

need

to go
through each sprite
that you use in the
palette and add a
'broadcast message’
block at the end of
the 'when this sprite
clicked’ stack. Set the message to ‘'normal brush’ and
you're all set to draw away.

Why stop at one sprite? You can keep adding or painting new sprites and using them
to paint with by following steps 18 to 24. You can even drag or duplicate scripts from
one sprite to another to save time, adjusting whatever settings and message names
need to be altered. Why not try different shapes and patterns, and see what works and
what doesn't?

My Scratch
racing game

Putting a car on the track is the easy part of this project, but to put it up
against some rival racers we'll need to make use of Scratch's lists

How to use
Motion blocks
and variables
to move a car
around a track

How to control
how a sprite
behaves with
colour

How to time
things in
Scratch

How to make
and use lists

his top-down racing game seems pretty
simple, with just a few sprites racing
around a flat 2D track. In fact, there’s a little
more to it. Most racing games feature some
kind of opposition, which usually means coding in
artificial intelligence routines to control where they
drive, how fast they go, and what they do when
they’re near to the player’s car. This is the sort of
problem professional game developers face every
day, but with Scratch it’s different. Not only are
these routines very difficult to code, but the code
required might slow Scratch down to a crawl.

That’s why this racing game - we’ll call it
Ghost Racer - cheats. Instead of controlling the
rival racers, it memorises how the player races,
then puts cars on the track that follow the same
patterns. It all works thanks to lists, which store the
player’s direction and speed in memory, then recall
that information to control three ‘ghost’ cars.

This is going to be a pretty complex project, and
before you tackle any complex project you should
jot down what you need to do, as this will help you
structure the program. In this case, we need to:

Build a racetrack
Put a car on the track

Create controls for how the car will speed up,
slow down and steer on the track

Define what will happen when the car comes off
the track

Track lap times

Let the player know when they have a new
record

Create lists to capture what the car does
Put our ghost racers on the track

Use the information stored in the lists to keep
those racers on the track

Define what happens when our car hits a ghost
racer

That’s quite a lot to be getting on with, so let’s
get started.

Before we do anything else, we need a
track. You can paint this yourself by clicking
on the 'Paint new backdrop’ button and
using the Backdrop Editor. Use the Paintcan

tool to fill the

whole space with

green, then paint

on a black road

with a nice, thick,

black brush. Set

the size of

the brush to

maximum, and

paint your track

straight on to the

green background.

Next,

we need a sprite for our car, Why not click on

the ‘Paint new sprite’ button and make your

own? Here's one we've made from a series of
ellipses, but you can make anything you fancy. Just have
fun, and let your imagination run wild.

Before we can put our car on the track, we
need to create some variables. Go to Data,
and create two
new ones.

Have them marked ‘For all

sprites’, and call them ‘lap

count’ and ‘speed’.

Now we start

assembling our

main control

stack for the player’s car. This first set of
blocks changes the car sprite
to a suitable size for our course
(10%), puts it in the right
place (x: 0, y: 98), pointing it
in the right direction (-90), and
sets the Speed variable to 0.
Our car is in position — it just
needs some code to make
it go.

Start by pulling in a Forever loop and adding
it to the bottom of the stack. Inside that
goes an 'if, then, else’ block. Drag a 'key x
pressed?’ block from Sensing into the space

next to the ‘if', and set the key to the up arrow. Now

grab a ‘change variable

by x' block from Data,

and pull this into the

space underneath the

‘else’. Set the variable

to ‘speed’ and the value

to -0.2. This tells the

car to slow down

gradually if the up

arrow key isn't being

pressed.

If it's being pressed, we want the car to
accelerate, but if it goes too fast, players
won't be able to control it. That's why we
now drag in another ‘if, then, else’ block and
nest it inside the ‘if’ section of the last one. For the ‘if'
condition, we use the 'x > x' operator block and the
Speed variable to tell the program that if the Speed
variable is higher than 6 it needs to keep speed set to 6.
Whatever happens, the speed can't creep up above
this level.

Next, add a ‘change variable by x' block

into the space below the ‘else’, and set the

variable to ‘speed"’ and the value to 0.2.

If the current value of speed is below 6 and
the up arrow key is being pressed, the value will go up
by 0.2. When we've done a little more work, the Speed
variable will control the speed of the car, so it will steadily
get faster.

What it can't do, however, is steer left or

right. Let's fix that. We add two 'if, then’

blocks to the bottom of the stack inside the

‘forever' loop. The top one uses the 'key x
pressed?’ block from Sensing to check whether the left
arrow key is being pressed, and, if it is, use the ‘turn
anti-clockwise x degrees' block from Motion to turn 5
degrees anti-clockwise. The bottom 'if, then’ block does
the same with the right arrow key, but with the ‘turn
clockwise x degrees' block. Our car can now steer left
and right.

Now we just need to add a few more blocks.
The ‘if, then' block that goes in next uses
the ‘x < x' operator to see if the Speed
variable is lower than 0.5. If it is, it sets it to

0.5. This stops our car from going backwards if the up

arrow key isn't pressed. The next block, the ‘move

speed steps' block,

simply tells the car

to move forward in

its current direction

by the current value

of speed. If speed is

6, it will move

forwards 6 steps. If

it's set to 3, it will

move forwards 3

Lists work a bit like variables, but they enable us to store, then use several different bits
of data at once. You can use them to hold different pieces of text, like a list of names or
a list of replies that a user makes when we ask them to type something in, or we can use
them to hold numbers, like a list of answers to sums or a list of coordinates in a game. All
we need to do is tell the program where to store the information - as, say, item1 in ‘my
shopping list’ — then we can use the same details to retrieve the information when we
need it. In regular programming languages, lists are normally called ‘arrays’.

steps. Click the green flag above the Stage, and you can
take your car sprite for a spin.

That's got the car moving, but we've still

got a problem. At the moment, the car

travels just as fast whether it's on the

track or not. We can, however, fix this
using an ‘if, then, else’ block and a special Sensing block
called 'touching x color?'. Drag the ‘touching x color?’
block into the space next to the ‘if’, and click on the little
colour square. The normal pointer should change
into a hand with a pointy finger. Move the hand over
the green grass area of the backdrop and click it. The

little square should
now match the
colour. Now drag

a ‘change variable

by x' block into

the space
underneath, and

set the variable to
‘speed’ and the value
to -0.2.

Now it's
time for
a little
bit of
rearranging. Click
and hold on the ‘if
key up arrow
pressed?’ block at
the top of the stack
inside the ‘forever’
block, and drag it
out of place. Next,
drag your new 'if
touching x color?’
block and place it
where the rest of the
stack used to be.

Now grab and drag the 'if key left arrow

pressed?’ block in the bottom half of your

stack away from the blocks above. You need

to place this inside the ‘forever’ block, but
outside the 'if, then, else’ block.

Finally,

grab the

rest of

the stack
and put it in position
inside the space
beneath the ‘else’.
You now have a car
that accelerates,
slows down and
steers, and that will
drive faster on the
track than it will on
the surrounding
grass. Go on, give it
a try!

We have a car that moves, but we don't
really have a game. Let's say that the goal in
Ghost Racer is to get the lowest lap times.
We need a way of tracking when the car
completes a lap, and how long it's taken to do it. To do
the first bit, we're going to create a new sprite. Just use
the ‘Paint new sprite’ button and the Line tool to draw a
yellow line going vertically down the screen. You might

want to rename it ‘line’ and name our car sprite ‘car’ to
make things easier later on.

Once it's finished, grab and drag the sprite
into position so that it's just ahead of the car.
Now click the Scripts tab. The line sprite's
script is pretty simple. We use a ‘go to x: y:'
block to set its position. The block should have the right
values in when you drag it out. The ‘if, then’ block uses a
‘touching x?' operator to see if the line sprite is touching

the car sprite, and if it does it will broadcast a new
message, which we call ‘new lap’. The ‘wait 5 secs’ block
makes sure the new lap message isn't triggered several
times as the car crosses the line. Finally, the ‘forever’
block makes sure that the program is always looking to
see whether the car is crossing the line.

In Scratch, you can add scripts to the

backdrop, just as you can to any sprite. Click

on the Course backdrop next to the Sprites

area, and start a new stack with a 'when green
flag clicked" block. For now, just add a ‘set variable to x’
block and set it to ‘lap count’ and 0. Now start off a
second stack with a ‘when | receive message' block, setting
the message to ‘new lap'. Go to Data and grab a ‘change
variable by x' block and stack this underneath, and set the
variable to ‘lap count’ and the value to 1. This will help us
keep track of how many laps our car has finished.

To time our laps, we can use Scratch's own
built-in Timer function. Go to the Sensing
category and click on the checkbox next
to the

‘timer’ block to

make it visible. You

might want to

move the counter

that appears so

that it's in the

top-left corner of

the Stage. Now

go to the Data

category and

create our first list.

Click the ‘Make a

List' button, and

call the list ‘Lap

Times'. Untick the

checkbox next to

Lap Times to hide the list from view.

Let's get back to our backdrop script. Add an

'if, then' block to the bottom of the ‘when |

receive new lap' stack, and drag an 'x > x’

operator into place after the ‘if". Drag the
block for Lap Times
into the first space,
and type 1 into the
second. This will tell
the next few blocks
to only start
working if the car
has completed its
first lap. Now grab
an 'if, then, else’
block and drag this
inside.

Pull an ‘x < x" operator to the space next to

the "if". Now go to Sensing, and find the

‘timer’ block. Place this in the first position on

the operator. Now go to Data and find the
block that says ‘item 1 of Lap Times'. Drag this into the
second position.

Find the block that says ‘insert thing at 1

of Lap Times'. Put this in place in the first

gap for the 'if, then, else' block. Drag the

‘timer’ block into the space where it says
‘thing’. Underneath, place a ‘broadcast message’ block.
Select a new message and call it ‘best time'.

Now find the block that says ‘add thing to
Lap Times'. Drag this into position in the
second gap of the ‘if, then, else’ block.
Again, drag the 'timer’ block into the

space where it says ‘thing’. What we've just done is

tell the program to look at the timer, and see whether the

timer for that lap

is faster than the

best time we've

seen so far. If it

is, it replaces the

best time. If it

isn't, it's just

added to the list

of times. Finally,

go to the Sensing

category and find

the Reset Timer block. Add it to the bottom
of this stack. This resets the timer to O for the start of

every lap.

Now create a new sprite by clicking the
Paint new sprite button. All we need to do
here is use the Text tool and type New Lap
Record in a bright colour, as you see here.

Now click on the Scripts stack and add these
two shorts scripts. The first centres the New
Lap Record text in the centre of the screen,
then hides it. The second waits for the Best

Time message, then flashes up the New Lap Record text
in the centre of the screen for a couple of seconds, then
hides it again.

We have the car moving and we're tracking
lap times, but how about some rivals

on the track? Well, first we need to create
two new lists. For each, go to Data, and

Each time the player car moves, its direction is stored in the Ghost Direction list, while its
speed is stored in the Ghost Speed list. When a new ghost is spawned, it looks to item 1
on each list and moves in the direction the Ghost Direction list tells it to at the speed the
Ghost List list provides. The Item variable then increases value by 1, so the next time the
ghost wants to move it takes its direction speed from item 2 on the list, then item 3, and
so on. While its speed isn't quite the same, it's basically copying the player’s driving.

click the ‘Make a List' button. Call the first list Ghost
Direction and the second list Ghost Speed. Untick the
checkboxes next to both so the two lists don't clutter up
the screen.

These two lists are going to store data for the

player's car's speed and direction, so that the

ghost cars can follow in the player's footsteps

— or tyre tracks, if you like. To make this
happen, we just need to add a couple of new blocks to
the player’s car's script. Click on the car sprite and scroll
down to ‘Move speed steps’. Now go to the Data
category and drag in two ‘add thing to list" blocks, just
above it.

First, let's deal with the top one of the two
new blocks. Go to the Motion category and
look for the ‘direction’ block at the bottom of
the screen. Drag this in where it currently
says ‘thing' and change the list at the end to ‘Ghost
Direction’. Now go to the Data category and drag the

Speed variable to where it currently says ‘thing’ on the
second block. Drop it there, and change the list to read
‘Ghost Speed', if it doesn't already.

We also need to adjust the script for the

backdrop. Look at the ‘when green flag

clicked' block, and add two ‘delete x of list’

blocks from the Data category. Set both to
delete ‘all’, and set one to delete all of ‘Ghost Speed’,
and the other to delete all of ‘Ghost Direction’.

For the ‘when | receive new lap' block, we

need to create a new 'if, then' block. We set

this up so that if the lap count is under 5 then

it will broadcast a new message, which we'll
call ‘go ghost'. Drag this in under the 'if, then, else’
block, but still within the ‘if lap count > 1" block. We'll
use this to spawn new ghost cars once per lap during the
second, third and fourth laps.

Now duplicate the main car sprite and call
the duplicate ‘ghost’. Make double-sure that
you have the ghost sprite selected, then
delete all the blocks of script in the Scripts
area. We need to add three all-new ones. The first tells
the ghost car to hide. The second tells the ghost car to

keep listening for the ‘go ghost’ message. When it
receives it, it has to wait 4 seconds, then create a clone
of itself.

This last script is a bit trickier. First, we need
to create a new variable called ‘item’, and
make sure it's set to ‘For this sprite only".
Start a new stack with ‘when | start as a
clone'. Drag a 'show’ block into place, followed by a
‘change color effect by 50', and two blocks to get the
clone in the right position and heading in the right
direction. Now go to Data and add a ‘set variable to x’

block, changing the variable to ‘item’ and the value to 1.

Next add a ‘forever' loop. Inside it sits

three more blocks. The first is ‘point in

direction’ from the Motion category. Look

at where the value normally sits, and drag
in an ‘item 1 of list' block from the Data category.

Place the Item variable in where the item number
would usually be, and change the list to ‘Ghost Direction’'.

The second block is almost a repeat, but

using a ‘'move x steps' block and the Ghost

Speed list. However, we want to slow down

our ghosts a bit so our player has to make
their way through them. That's why we use an ‘x — '’
operator block, with ‘Ghost Speed' in the first space and
0.5 in the second. Finally, we use a ‘change x by x' block
to ‘change Item by 1'.

We're nearly finished, but we'd like to have

some kind of penalty for when the player's

car hits a ghost car. All it takes is one final 'if,

then’ block in the scripts for the main car
sprite. This tells the car sprite that if it touches the ghost
sprite, it has to change its speed by -1. Drag this into
place above the ‘if speed <0.5 then' block, and you're all
finished and ready to race!

My Scratch
QuiZ

Harness the power of lists to build your own brilliant quiz

n the last project we used lists to store
information from our player’s race car and use
it with our ghost cars. Now we’re going to use

Now we need to create our first variables.
Click on the Scripts tab then the Data
category. Click the Make a Variable button

More about lists again to store questions and answers for a and call the variable ‘question number'. Make
listsand what quiz. It's a simple multiple-choice quiz, but there’s sure that ‘For all sprites’ is switched on, then click OK.
they can do plenty going on beneath the surface. So we’re going

to plan out the questions and answers first.
How to use On some paper, write down each question and
lists to hold three possible answers - make sure you know which
and access answer is correct. Since we’re merely starting off
information this project, we need only five sets of questions

and answers, but you can add as many as you like
How to build thereafter. This is one of those projects where, once
clickable the basics are up and running, it’s easy to add to it.
buttons

Start off the new project by getting rid of

How to use the Scratch cat, then click on the ‘Paint new
sound and backdrop’ icon. The backdrop we want is
animation to simple: just a blue background, a red square
give feedback and a yellow rectangle as shown. Use the paintbucket to

fill in the background, then use the Rectangle tool with
the “filled" button clicked in to make the two shapes.
When you've finished, mouse over to the old empty
background and click the ‘x" button in the top-right
corner to remove it.

Now repeat the same steps to build a second variable,
but call this one ‘score’.

It's time
to start
adding
questions.
Click the Make a List
button, then enter the
name as ‘questions’.
Now click on the
bottom-right corner
of the new list and
drag it out a little. This
will make it easier for
you to see what
you're doing. With that done, press the ‘+' button in the
bottom-left corner to start adding items to the list.

A box will
appear with
a blinking
text cursor.
All you need to do is
type in your question
then press the Return
key. If you need to
remove a question or
you add one too many,
click the 'x" button
within the little text box.

Once that list is done, click the Make a List

button again to create a new list. Call this

one 'A answers', and enter your first set

of multiple-choice answers. Each one
needs to be a possible answer for the question with the
same number.

Scratch’s lists are what programmers call ‘single dimensional arrays'. Each one has an index
number (for example, item 1 of the questions list) that points to one entry (Who wrote
the book, Frankenstein?). However, in this project we use a variable (question number) to
work across five different lists and pull out the right information from each one. As long

as the lists have the correct information in the correct order, it's all under control. In effect,
we're faking what programmers call a ‘multi-dimensional array'.

When you've finished your first set, make a

new list, call it ‘B answers’ and enter your

next set of answers. Once that's done, create

another new list and call it ‘C answers'. Enter
your final set of answers, and we have the questions and
answers ready to go.

All the same, we still have one more list to

build. This one is called ‘Correct’, and it lists

which answer — A, B or C —is the correct

answer for each question. Make sure you
pick the right one!

Of course, nobody wants to see a quiz with
all the questions and answers on the screen.
Untick the boxes next to all your new lists

and variables to remove them from the stage.

Now it's time

to add some

buttons. Click the

'‘Choose sprite
from library’ button then click
on the Letters category. Click
on the A-Glow letter, then
click OK. Repeat to add the
B-Glow and C-Glow letters
and all three will appear on
the Stage. These are our
answer buttons.

If we leave the buttons where they are,

we won't be able to use them or read the

multiple-choice answers. Drag them into

position as shown. There's a little trial and
error involved, so you may need to come back and adjust
them later. Remember: you can always use the Grow and
Shrink buttons in the toolbar to make a sprite bigger or
smaller to fit in all three.

Now to
add our
question
master: the
ever-cheerful bat. Click
the ‘Choose sprite from
library’ button, then on
the Animals category
to find him. Click on
him and then press Add. Now drag him into position
inside the red box.

Click on

the Stage

to select it.

It's time to
start building the first
script. Pull in a ‘when
green flag clicked’
block from Events,
then go to Data and
pull in the ‘set variable to x' block. Set the variable to
‘question number’ and enter the value as 1. Now pull in
another ‘set variable to x' block, but set the variable to
‘score’ and leave the value as 0.

Go to the Events category and drag in a

‘broadcast’ block to the Scripting area. Select
New Message and enter ‘ask’. Then drag the
block into position at the bottom of the stack.

Now click on the Bat sprite. Go to Events and
grab the ‘when | receive block'; set it to ‘ask'.
Now go to Looks and pull in a ‘say’ block.
Add it to the bottom of your new stack.

This next bit is a little complicated. Click on
the Data category and look for the block that
says 'ltem 1 of list name’, where list name
will probably read Correct. Pull this into place
in the ‘say’ block. Now look again at the Data blocks and
pull in the block for the ‘question number' variable. Drop
this where the number 1 is at the moment. Finally, set the
list name at the end to ‘question’. This tells Scratch to
look at the current value of the ‘question number’
variable, and say the question attached to that number.

The good news is that, having built this block,
we can reuse it. Right-click on it then click
Duplicate and drag it onto the A-Glow sprite.
Repeat for the B-Glow and C-Glow.

All we
need to
do now is
adjust the
script for each sprite.
Click on the A-Glow
sprite and change the
questions list to read
‘A answers', then click
on the B-Glow sprite
and change it to read
‘B answers'. You can
probably work out
what to do with the
C-Glow sprite, right?

add a 'play sound pop' block from Sound, then go to
Data and drag in a ‘set variable to x" block. Change the
variable to read ‘chosen’ and change the value to read A.

Next, pull in an ‘if, then’ block. Go to the
Operators category and pull the ‘x = x’
operator into place next to the ‘if'.

Now press the Green Flag button to see the
quiz in action so far. You should see your
first question plus the first three multiple-
choice answers.

This bit is also pretty complicated, so take it

slowly. Find the chosen variable in Data, and

drop it in the first slot of the 'x = x' operator.

Now find the block that reads ‘item 1 of
Correct' and drag that into the second slot. If the list
name doesn't read Correct, change it to Correct.

It's time to set up our buttons to answer the
questions. First, create a new variable by
clicking on the Data category then the Make
a Variable button. Call this one ‘chosen’.

Now click

on the

A-Glow

sprite, go Now grab the block for the ‘question
to Events and drag in number’ variable; put that into the slot next
a ‘when this sprite to ‘item’. This tells Scratch to check whether

clicked' block. Below it, the chosen variable has the same value as the

Correct item for that question. In other words, if the
player has clicked the button with the right answer.

Now pull in a ‘change variable by x' block,
and set the variable to ‘score’ and the value
to 1. This just tells Scratch that if the
conditions have been met — that the player

has clicked the right answer — to increase their score by 1.

This stack needs two last blocks. First, pull in

another ‘change variable by x' block and set

it to ‘question number’ and 1. Now drag a

‘broadcast’ block to the bottom of the stack,
and set it to broadcast the ‘ask’ message. This basically
tells all our sprites to deliver the next question and its
possible answers.

Again, having finished this stack for one
sprite, we can duplicate it and use it with
the others.
Right-click it,

select Duplicate, and drag it

across to the B-Glow and

C-Glow sprites. Now click

on each one in turn and

adjust the script to match.

Change the value in the

‘set chosen to" block to

B for the B-Glow sprite and

C for the C-Glow sprite.

Press the Green Flag button to give the quiz
a go. Clicking on an answer should now take
you to the next question.

It works — but wouldn't it be great if your

players could find out if they had got the

answer right or wrong? Let's add two new

sprites: a tick (Button 4) and a cross (Button
5) from the buttons category. Once they appear on the
Stage, move them into position in the top-right corner. It
doesn't matter if they overlap. In fact, it works better if
they do.

Now we're going to dismantle the block of

script we made earlier. Click on the A-Glow

sprite and pull the ‘change question number’

and ‘broadcast’ blocks from the bottom of
the stack, then the ‘if, then’ block. With that done, drag
in an 'if, then, else’ block.

Drag the 'if chosen = item question number

of correct’ block we assembled earlier into

the slot next to the 'if', and the ‘change

score by 1" block into the C shape beneath.
Now drag in a new ‘broadcast’ block, select New
Message and call the message ‘tick’. Drag it into the C
shape beneath the ‘if’. Pull in a second new ‘broadcast’
block and call this one ‘cross’. Drag this into the C shape
beneath the ‘else’.

Finally, reattach the ‘change question
number’ and ‘broadcast ask' blocks to the
bottom of the stack. Now, go to the B-Glow
and C-Glow sprites and right-click and delete
the stack that this stack will replace. With this done, you
can just right-click to duplicate our new stack, then drag

it over to the B-Glow and C-Glow sprites. Remember to
change the value in the 'set chosen to' block to B for the
B-Glow sprite and C for the C-Glow sprite.

Now click
on the ‘tick’
sprite, and
add a new
script with a ‘when green
flag clicked’ block at the
top and a ‘hide’ block,
from Looks, beneath. This hides the sprite when we don't
want to see it.

Click on the Sounds tab, then on the ‘Choose
sound from library’ button to add a sound.
Here we're using a spooky wolf howl.

Now start

a new

stack with

a 'when
| receive’ block,
followed by a ‘play
sound' block from
Sound. Set the sound
to the wolf howl.
Below this add a ‘set x effect to x' block and a ‘set size to
x %' block. In the first block, set the effect to ‘ghost’ and
the value to 100. In the ‘size’ block set the value to 80%.
Finally, add a ‘show’ block from Looks.

Add two
‘repeat
x' blocks
to the
bottom of the stack.
In the first one, add
a ‘change x effect by
X' block and set the
effect to 'ghost’ and
the value to -5. In
the second, add a
‘change size by x’
block and set the
value to 2. Finally,
add a 'hide’ block to
hide the sprite when
it's finished showing.

Having
built
these
two
stacks, we can reuse
them for the cross.
Duplicate each one
and drag it over.
Change the message
in the top block of
the larger stack to
‘cross’, and give it a
different sound if
you like. Here
we've opted for a
piercing screech.

All we need now is a cool way to end our

quiz. We'll start with a quick backdrop

switch. Click the ‘Choose backdrop from

library' button and select something
appropriate. Here we're using the woods. We don't want
to start with this backdrop, though, so click on the Stage,
then on the Scripts tab, and add a new ‘switch backdrop
to x' block into our ‘when green flag clicked’ stack. Set it
to our main backdrop: backdrop2.

Now add a ‘wait until' block to the bottom of

the stack and put an 'x = x" operator block in

the slot. Click on the Data category and pull

the ‘question number’ variable into the first
slot of the operator. Now work out how many questions
you have, add 1 to the figure, then type that in as the
second value. To finish this stack, add another ‘switch
backdrop to' block and set it to ‘'woods’, then add a new
‘broadcast’ block. Call this one ‘game over'.

Click on the Bat sprite and assemble one last

stack of blocks. This one starts with a ‘when |

receive’ block; set this to ‘game over'. Now

grab a 'say’ block from Looks and pull in the
‘join hello world" block from Operators. Place it where
you'd normally enter text. Type ‘Your score is:" with a
space at the end where it says ‘hello’.

Finally, drag the in

‘score’ variable and

drop it over ‘world’

in the ‘join’ block.
When the player has answered
all the questions, the backdrop
changes and the bat dishes out
their final score.

My Incredible
Scratch App

Learn how to build an app with this fun-filled, monkey-themed timer

How to build
buttons with
animated
effects

How to use
cloning

to make a
numerical
display

How
duplicating
scripts can
save you
plenty of time

cratch is great for forming simple arcade
games or cartoon animations, but you can also
use it to build smartphone-style apps. This
one - a programmable timer with a dancing
monkey - is both simple and a little bit silly, but it
gives you a taste of what’s involved. Building apps
by hand can be a long-winded process, but by using
duplication we can cut down the workload.

Start by ditching that under-appreciated
Scratch cat, then click the ‘Paint new

them and pressing OK until they're in a jumbled mess in
the middle of the stage.

The

buttons

need to be

resized
and put in the correct
position. We could do
this manually, but we'll
get a more precise
result using a script. Click on the O sprite then set up the
stack as shown, with the value of the ‘set size box' to
60% and the positions on the ‘move to’ block set to
x: 30 and y: -130.

backdrop' button. The scene you want to You can

paint is constructed from three filled now drag
rectangles. Start with the blue one (the floor) then the and drop
red one (our timer) and the yellow one (our screen). this stack

Now we want to put our buttons into place.
Click the '‘Choose new sprite from library’
button and put them in in turn. Here we're
using the 0-Glow, 1-Glow, 2-Glow and so on,
buttons from the Letters category. Just keep on adding

onto each of the

number sprites. This,

of course, will mean

each one turns up in

the same position, but you can adjust the x: and y: values
in each 'move to' block to get them in the right place.

In our case, the four

rows of buttons have the

y: coordinates -130, -80,

-30 and 20 (all 50 pixels

apart), while the three

columns have the x:
coordinates 30, 80 and

120. Once you know

that, you can work out the rest.

Now click on

the Stage,

then on

the Data
category. Make two new
variables — ‘countdown’
and ‘position’ — and one
new list, which we'll call
‘timer’. We also need to add a quick stack to clear the
decks each time the app launches. It's a ‘when green
flag clicked’ block, followed by a 'set variable to x" block
with ‘position’ as the variable and 1 as the value. Finally,
pullin a ‘delete x of list’ block, and set x to ‘all' and the
list to ‘timer'.

Right, time to start scripting our buttons. This
stack starts with a ‘when this sprite clicked’
block, followed by an 'if, then, else' block,
where we place an 'x > x' operator block into
the slot after the ‘if". In the C-shape beneath, we have
two ‘change x effect by x' blocks from Looks separated

by a ‘wait control’ block set to 0.2 seconds. Both ‘change
x effect’ blocks need to be set to color, but the top one is
set to -50 and the bottom to 50. This part of the stack
tells Scratch to check if we already have three numbers in
our display, then flash colours quickly, but to not add on
any more numbers. Three is enough.

We'll now prepare a few blocks ready to go

into the C-shape under the ‘else’. Go to Data

and get the 'add x to list' block, with the

value set to 1 and the list set to ‘timer’. Then
we need a ‘change size' block from Looks, set to -20,
then a ‘play sound’ block from Sound, set to ‘pop’. After
that we have a ‘wait’ block from Control set to 0.2 secs,
another ‘change size' block set to 20 and, finally, a ‘create
clone of' block from Control set to ‘myself'. Assemble
that lot, then drag it into position.

Again, we can save ourselves time and effort
by duplicating. Drag this stack onto each
number in turn, then go through and adjust
each script. All you need to change is the

‘add x to list’ block (at the top of the stack under ‘else’).
Change it to 1 for the 1-Glow sprite, 2 for the 2-Glow
sprite, 3 for the 3-Glow sprite and so on, up to 9.

The buttons will work, but we want to put
some numbers on our display. We're going to
cut another corner here by using cloning.
Click the 0-Glow sprite again. The start of
this script, after ‘when | start as a clone’, tells the new
clone to be smaller than the Button sprite and a
different colour.

Now we'll use our ‘position’ variable to track
where the numbers go. We use three straight
‘if, then" conditional blocks from Control,
each one with an 'x = x' operator block after
the "if". This tells Scratch to put the new clone in one
place if it's the first button pressed, to the right if it's the
second, or even further to the right if it's the third.

You've guessed it — we can duplicate this
script too. Drop it onto each of the other nine
number sprites. This time it doesn't even
need any adjustment.

We now add a new sprite — the tick from the
Things category — to play the part of the Go
key on our timer. Just drag this one into
position, then start work on this stack of

script. It begins easily enough with a ‘when this sprite
clicked’ block, followed by a ‘change size' block, a ‘play
sound' block, a ‘wait' block and another ‘change size’
block. The tricky bit is the ‘set variable to x block at the
bottom. You can set the variable to ‘countdown’, but for
the value you need to drag in one ‘join hello world" block
from the operators, then drag another one in and drop it
where the first one says 'world'. The result should look
like this.

The remaining ‘hello’ and ‘world’ slots are
now filled with three ‘item x of list’ blocks
from Data, with the list in each one set to
‘timer'. The first should read item 1, the
second item 2 and the third item 3. Finally, add a
‘broadcast’ block and give it a message. Call it ‘start'.

It's time to add our final sprite — this cheeky

monkey, who's going to act as our alarm.

Bring him in from the Sprite Library, drag him

into position, then start on his stack of script.
The first bit uses a ‘say’ block with two ‘join" operators,
just like we used in step 12. Change the first bit of text to
‘After ' (remember the space at the end), then go to Data
and drag the ‘countdown’ variable into the second place.
In the last bit, type ' seconds | will go crazy!". Remember
the space at the beginning.

But how will our Monkey go crazy. This next
section uses a ‘Repeat until' loop, using an
'x = x" operator with the ‘countdown’
variable as the first value and O as the
second. The blocks within the loop tell Scratch to cycle

through the monkey's costumes, wait a second, then
decrease the value of the ‘countdown’ variable by 1. This
makes the script count down until it reaches 0.

This second section is our alarm. There's a
‘repeat x' block set to 3, and inside that we
put a ‘play sound’ block with the monkey's
‘chee chee' noise, followed by a ‘switch

costume’ block set to ‘'monkey2-a’. The two 'repeat x'
blocks below tell Scratch to move the monkey up by one
pixel 10 times, then down by one pixel 10 times, so that
it looks as if he's jumping up and down.

That's it. Press the Green Flag button and
click on three of the number buttons in a row.
Click the tick, and the timer begins. When it
reaches 0, the monkey goes bananas!

Put yourself in
the program

Get Scratch working with your webcam, and you can put your own face in a
program or add simple sound and motion controls

How to use a

e might mostly use webcams for
making video calls, but they can also
be put to good use in your latest
Scratch program. Webcams can be

webcam for used to capture sprites and backgrounds, allowing

motion you to put just about anyone or anything into your

controls in program, or set a game inside your living room.

Scratch Meanwhile, take a look inside the Sensing script
blocks and you’ll find a series of blocks that enable

How to trigger you to sense motion using the camera or noise

effects with from a microphone, so that your scratch programs

noise can respond to movement, a shout or a handclap
from the user. Sounds good? We’ll see how it’s done

How to bring with a trio of bite-sized projects.

webcam

photos into Project One: Bat Burster

programs Our first webcam project is a simple game where

How to record

we’ll despatch a swarm of deadly vampire bats with
a pointy finger (although, in practice, the game

your own will work with just about anything you can wave in
sounds and front of the screen).
use them hides our initial bat. However, it also uses the ‘turn

Kick off the project by hitting the ‘Choose a
new sprite from library’ button, and selecting
this cartoon bat. Leave the Stage with the
default blank backdrop. We'll be filling it in
a minute. Now create
three variables and call
them ‘bats’, ‘score’ and
‘bat count'. You can set
them all to For all
sprites.

video on' block, which you'll find in the Sensing category.
This starts the webcam up, and once your webcam

kicks in you should see yourself or your surroundings on
the screen.

Now click on the Stage, as we want to add a
stack here. This one controls the general flow
of the game, broadcasting a new message,
which we'll call ‘go bats’ and resetting the
timer at the start of each new wave of bats. We allow 10
seconds for the player to get rid of each wave. Once 10

This initial seconds is past, the program will broadcast a ‘game over'
stack sets message. On the other hand, we want to check whether
the three the player has got rid of the last wave of bats. The Bats
variables to variable controls how many bats are released in each

their starting values and

wave. The bat count tracks how many bats the player has

squished. When the two numbers are equal, all the bats
are gone, so the game calls in a new wave with 'go bats'.

Here's the block that kicks in when that
message is triggered. First, it adds 1 to the
Bats variable, so that each wave has more
bats than the last. Then it resets the Bat
count variable to 0 and resets the timer. You've seen the

next loop before. It uses the Bats variable to control how
many times the loop repeats, and so how many clones of
the bat sprite will be created.

The next stack starts with the ‘when | start as
a clone’ block, then adds a random element
to the size of the bats, so that we'll get some
small ones and some big ones. The Show

block reveals each clone, then the ‘go to" block places
each bat in a random location. The x and y settings, -200
to 200 on the horizontal axis and -160 to 160 on the
vertical, stop the bats appearing too close to the edges.

The second half of this stack uses a Forever
loop, then an ‘if, then' block, so that the
program is constantly checking to see
whether the condition we're about to set is
being met. In this case, we use the ‘x > x" operator block,
and drag in the ‘video motion on this sprite’ block. This

checks whether any motion underneath or around the
sprite in question reaches a certain level, which we've set
to 20. There's a bit of trial and error here, as so much
depends on your webcam and your lighting. Once you
have the game up and running, you might want to adjust
this variable until the program works properly.

When there's enough motion to trigger the
if, then' block, we get a pop sound, the Bat
count variable goes up by 1 and the player's
score goes up by 1. Then the clone is deleted.

Another bat bites the dust! Give the game so far a
go, and see how well these primitive motion controls
work out.

Finally, we need to set what happens when
the player runs out of time. This last stack
brings the original bat sprite to the front,
changes the size, then shows a Game Over
message for two seconds. It then tells the player what

they scored. Here, the Join operator does the work,
combining the text in the box after join with the current
value of the Score variable as one message. Finally, the
‘stop" block, set to ‘all’, brings our program to a close.

Project Two: Good Dog!

Our second project shows off the directional
sensitivity of the Video sensing blocks. We’ve
already seen the ‘video motion on this sprite’ block,
but you can also set this to sense video direction.
This works the same way as Scratch’s sprite
direction, so o is up, 9o is right, 180 is down and
-90 is left. In this case, we’re just going to focus on
moving left and right, with an animated dog we can
push along in either direction with a gesture.

The project begins by importing a sprite from
the library. Here, we're going to use Dog2,
though any sprite with a walking animation
will work. Again, there's no need for any
backdrops, as the video feed from the webcam will fill
in instead.

The first stack puts the dog in position and
ensures the rotation style is set to ‘left-right’,
so that our dog only moves along a
horizontal line. We then grab two
video-friendly blocks from the Sensing category. The
top one switches on the webcam. The second sets video

transparency to 0, so that the dog appears on top of

the video feed, with no visible background whatsoever.
Finally, the ‘broadcast message’ block sends a new
message, ‘walkies', which will start the stack that controls
the dog's movement.

Here's the start of the ‘walkies’ stack. The
‘forever' block keeps the blocks inside at
work while the program is running, and we
use an 'if, then’ block just to check whether
there's any motion on the webcam. If your webcam is
being oversensitive, you can use the value here to make
it a bit less sensitive. Just keep pushing the value up so

that the dog only moves when you want it to. Finally, the
'if on edge, bounce' block makes the dog turn around if
or when he hits the edge of the screen.

We can now start constructing the rest of the
stack. It's controlled by an If, then loop with
an 'x > x' operator. Into this goes a ‘video x
on x' block from the Sensing category, which
checks whether the direction of any movement around
the sprite is moving left or right. If it's moving right, this
chunk of script makes the dog face right and walk right,

using the kind of animation we used in our cartoon
project earlier on.

Here's the second chunk of the stack. This
does exactly the same thing, but it checks for
movement going left, then turns the dog
around and puts him walking left. Notice the

drum beats. These help control the speed of the walk and
add a little noise to the animation, too.

The two chunks stack together, then the
whole caboodle fits inside the first ‘if, then’
block. Give the program a spin. The dog
should move left or right according to the

You can use the ‘set video transparency to x' block to
decide how much or how little of the video feed will be
visible in the finished program. Set it to 0 and any sprites
will be overlaid directly on the view from your webcam.
Set it to 100 and you'll get the backdrop of the Stage
with no video showing through. You can still use your
webcam for motion control, but you won't see anything
it's pointing at.

movement of your hand. Remember, if it's not working,
keep adjusting the value of the ‘video motion sensing’
block at the top of the stack.

We're not finished yet, though. Did you
know that Scratch can listen through your
webcam or our laptop's microphone as well
as watch? This last stack uses the ‘loudness’
block from Sensing. If this goes above the threshold we

Have fun taking your
animated dog for walkies with
simple hand gestures!

set using the 'x > x' operator, it stops all the other scripts
running for a minute, changes the dog's costume to put
it in a listening pose, makes him think ‘hmm..." and then
makes him woof. Broadcasting the walkies message gets
him back moving left and right again.

Project Three: Become a Space Invader

A webcam is great for simple motion control
projects, but it’s also brilliant if you want to bring
objects, places or people from real life into your
programs. Here, we’re going to adapt our earlier
Starfish Storm project and show you how to
transform your mum, dad or mates into menacing
space invaders.

First, you need to open up your Starfish

Storm project. Go to the My Stuff page and

click the See Inside button underneath the

project. We don't want to permanently
change the original, so click on the File menu and select
Save as a Copy.

Now click on the main Starfish sprite, then on

the Costumes tab. Look above the list of

costumes and click on the Camera button

to create a ‘New costume from camera’. A
window will appear showing you the current view from
your webcam. Get yourself into position, then click the
Save button.

You'll want to edit
this costume
before you start
using it. Choose
the Select button from the
toolbox on the left, then drag
the box over the square or
rectangular area of the image
you'd like to keep. When you're done, press the Ctrl+C

keys at the same time. This copies the selected chunk of
photo into memory.

Now press the Clear button to empty the
editing screen, then press Ctrl+V at the same
time. Your selected chunk of photo will pop
back into view. Position it over the cross in

the middle of the Selecting screen, click to place it, then
tap the Esc key.

You can edit the new

costume if you want,

adding neat little

touches like devil
horns, glasses, weird eyebrows or
a nice moustache. For now,
though, we'll leave it as it is. In
this case, there's only one costume
and there's no need to fiddle around with ‘switch
costume' blocks. If you need to, though, you can always
add them to your script stacks, making sure they point to
the costume you've just created (called ‘photo1’ unless
you change it).

You don't have to
stop at the webcam
photos, however.
Why not bring in
samples of your own voice?
Click on the Sounds tab, then
the microphone-shaped button,

You can always create simple animations by using the
webcam to make a number of costumes of the same face
in different poses or animations. You can then use an
animation script like the one here to switch between the
costumes at the right speed.

‘Record new sound'. You'll see the Sound Editor. Press
the round Record button to record, the square Stop
button to stop and the Play button to play things back.

You can

also click

and drag

on the
soundwave in the
window to highlight a
section of your sound,
then use the Edit menu
to trim or copy sections.
You can also add simple
fade-in, fade-out or
volume effects. Here,
we're just cutting out
unwanted sections from
our sample.

When

you've

finished

tinkering,
you can simply change
the 'pop’ noise the
invaders make when
they're blasted to
your new sample
(recording1 unless you
change it). Every time
they're shot, you'll
hear the noise — better make it a blood-curdling scream,
then!

sShare your
projects

Scratch isn’t just about building projects, but about sharing your projects
with the Scratch community. The great thing is that it's very easy to do

How to share
projects

How to use
tags to help
other users
find your work

What studios
are, and why
you should
use them

hen you finish a project and you're
proud of it, it’s only natural to want
to share it, whether that’s with your
family, your friends or all the other
kids at school. Scratch makes that easy, but it
also goes much, much further. Community is
an important thing in Scratch, and enthusiastic
scratchers, as they’re called, like to share their
work with other scratchers, not just so they can
try a program out or play a game, but so that they
can look at the code, maybe learn from it, or even
suggest improvements. In fact, scratchers will even
remix each other’s projects, making them work
more efficiently, or adding features and ideas that
the original author might not have thought about.
Because Scratch itself is web-based, sharing a
project is extremely easy. All it takes is a few clicks,
and your projects could be being enjoyed and
remixed by a legion of keen scratchers.

Sharing a project
You can actually share a project at any time
while you're working on it. Look at the top
right of the main Scratch project interface
and you'll see two buttons: ‘Share’ and ‘See
project page'. Click Share and your project will be shared,
and accessible by anyone.

All the same, it's more useful if you set up a
proper project page with any notes on the
program, and any information on the controls
or how to use it. If you're in the project

interface, just click on the ‘See project page’ button. If
you're in the My Stuff page, just click on the project's
name, where it's written in blue.

The left-hand side of the project page is
dominated by a window, where clicking the
green flag button will start your program
running. On the right-hand side are two

textboxes, with one for instructions, and one for notes
and credits. Click in a box to start typing. Use the
Instructions box to tell users what a project does or how
to win the game, and also note down any keys that need
to be pressed.

Use the Notes and credits box to mention any
ideas about the program, and to credit any
games, programs, projects or scratchers that
inspired it or have helped while you were

trying to code it. The

Scratch community is

a caring, sharing kind

of place, so if you've

found something

useful by looking at

someone else's

program it's only fair

to give them credit.

You can enter Project Tags in the box to help

other scratchers find your project. You can

only post a maximum of three, so think about

them carefully. Basic categories like games or
animation are already set up for you to pick, so try to
give one to every project. Here, we're going for games,
‘racing’ and ‘cars’. When you're done, press the Share
button at the top and your project is shared.

The bar along the bottom has options that
scratchers can use when they look inside or
try your project. The Star allows them to
bookmark your project, so they can find it
easily later. The Heart is used to tell you and fellow
scratchers that they like your project. You can see who
has liked or bookmarked your project from the numbers.

The Studios button allows a scratcher to put your project
in a studio (see above), while the Embed button is used
to embed the project in another website, like a school
website or a blog. Finally, ‘Report this’ is used to report
any content that might break the law or upset someone.
Still, you wouldn't do anything like that, would you?

Studios are collections of projects, organised by a type or a theme, or just by the fact that
whoever runs the studio likes them. Anyone can create a studio by going to the My Stuff
page and clicking the ‘+ New Studio’ button. You can change the picture, add a description,
then start adding projects to your studio. These don't have to be your own projects. If you
like someone's work, you can add it to your studio and point other scratchers to it. Scratch
users can follow other users and keep track of their new projects, but also follow studios, so
by setting up a good studio full of good projects you can help promote the best.

Once you've created a studio, you can also invite people to work as curators on it. This
empowers them to add projects or remove them from your studio, so you could have a
whole team of you working together, adding your own projects to a studio or finding great
projects to share. If you have a few friends using Scratch, it's a great idea.

The two icons

at the right of

the bar tell you

how many
scratchers have viewed
your project, and keep
track of any remixes. Click
on this button and you can see any remixes listed, plus
any remixes of those remixes. Produce something really
good, and you might start a whole family of offshoots.

Once you've shared a project, others

can leave comments on it. The Scratch

community tends to be friendly, but if you

get mean or snarky comments, you can turn
off commenting with a quick tick in the checkbox. The
two areas on the right list the most recent remixes, or any
studios this project has been added to.

Remix your
projects

If you can see inside a project, you can change and potentially improve it.
Welcome to the wonderful world of Scratch remixes!

What are
Scratch
remixes

How to make
your own
remix

s we mentioned before, the Scratch
community isn’t just about sharing
completed projects, but about sending
projects out into the community so
others can help you with a problem, improve
your code, or add exciting, new features. It’s even
possible to take a project you like and use it as the
basis for your own project; it’s not stealing as long
as you make sure the author gets credit. Scratch
makes this easy with its concept of remixing.
Remixes are versions of a project, usually made
by a different scratcher, that might alter the original
project. Scratch automatically tracks remixes as
they’re created, so that everyone can see which
projects started where, and how many remixes a
project has inspired.

Remixing the Ghost Racer game
Another scratcher, NinjaBee, has found
our Ghost Racer game. She's played
around with the game a little, and wants
to see how it ticks. Having left a cheeky

comment, all she needs to do is click the See inside

button to have a look at all
the backdrops, sprites and
code.

She can now see the code and even change

it, but she can't save any changes to our

original version. If she wants to do anything

to the game, she needs to press the orange
Remix button and start her own remix. If she does so,
she'll see this message.

NinjaBee has decided to take the game's title

literally, and change the costume for our

ghost car sprites to ghosts. She's turned the

costume upside down, as otherwise the ghost
will be upside down when it first appears.

Now she's messing around with the ghost's

script. She's added a ‘Set size to x?' block to

make the ghosts larger and changed the

colour effect to a ghost effect. We've now
got big ghosts you can actually see through racing
around on the track.

That's not all. She altered the Go Ghost
script, so that the ghosts only wait two

seconds before spawning, and changed
the operator block and the values in the

‘'move’ block at the bottom of the ‘when | start as a
clone’ script. The ghosts are now travelling faster than
the car.

And now
she’s
changed
the script
for the car sprite so
that, when a ghost
catches up with it, it
plays the ‘zoop' sound
and loses speed
altogether. You're
no longer trying to
race your way through

Why not make your own remix
of the Ghost Racer game (or
KillerBee's alternative)? Change
the top speeds of the car or the
speed of the ghost cars. Change
the variables to put more ghosts
on the track. Try different
backdrops with different track
layouts, or add two types of
ghost car with different speeds.
Try adding a brake control or
engine noises to the game. The
beauty of remixing is it's easy to
come up with your own version.
Here, we've made a few
changes to the scripts for the
Stage and the New Lap Record
sprite, as well as giving the New
Lap Record a new costume to
say Game Over. See if you can
see what we've done, and work
out what we're trying to do. Is
there any way you could do it
better? Why not give it a try?

the ghost cars, but instead trying to speed away from
actual ghosts!

With her remix finished, KillerBee is off to

the project page, where she changes the

instructions, notes and credits before sharing

her remix with a click of the Share button.
The finished project page looks something like this.

My awesome
Scratch game

It's time to harness all of our Scratch skills to make one final and (fairly)
awesome retro-style arcade game

How to
improve
performance

How to make
your own
blocks

Add a new
wave message

olour Clash is a retro-style arcade game
where the player pilots a triangular
starship that leaves a destructive, red
trail. Your objective is to destroy the
fiendish, blue starships by enveloping them in
your trail. Your ship runs on energy, which you
capture from the blues when you destroy
them. Run out of it and it’s game over. Destroy
enough of the blue ships, however, and you’ll
launch a new wave, giving you a handy energy
boost and even more blue starships to destroy.
The only complication? Hitting the blue starships
saps your energy. You might survive the odd
brush, but do it too often and you’ll find yourself
out of gas.
OK, so it’s not exactly Minecraft, let alone Super
Mario, but what do we need to make it work?

A red starship that leaves a deadly trail
Blue starships to destroy
An energy meter

A way of launching new waves and setting how
many blue starships will be in each wave

A way of keeping score
When a blue starship hits the energy trail, they
need to be destroyed, boosting the score and the

player’s energy

When the red starship hits a blue starship, it
needs to lose energy

When all the blue starships are destroyed, we
need a new wave

When the red starship runs out of energy, we
need to end the game and say ‘game over’.

That’s a pretty good working framework, so let’s
put it into action.

We'll start by setting up the sprite the player

will control. Press the 'Paint new sprite’

button and create it line by line. Our design is

deliberately simple, but if you want
something different, go ahead.

We'll start by getting the movement
right. We're going to handle our ship using
the mouse,
and control
its speed with a
variable, so we need to
go to Data and hit the
Make a Variable
button, and call that
variable ‘speed’. Once

that's done, we start off
with the necessary
blocks to set the size,
the starting position
and the starting
direction.

This is the

basic movement stack for the ship. It's

actually a variation of the script we used in

the racing game, but instead of using the
cursor keys to control direction, the ship points in the

direction of the pointer and accelerates when we press
the mouse button. If you take a good look at the stack,
you can see how we use the Speed variable to control the
speed of movement, and how pressing the mouse button
(the ‘'if mouse down’ condition) increases the speed to a
maximum of 4.

Now we need to put the trail in place. For
this, we use Scratch’s Pen feature, just like we
did in the Pattern Generator project earlier.
You can see where we've put the three green
pen blocks so that, when the mouse if pressed, a line is

drawn with the

pen colour set to

60 and the size to

2. We've also put

a ‘pen up' block

below the ‘else’,

so that the pen

won't draw if the

ship isn't

accelerating, and a

‘clear’ block near

the top of the

stack, to clear the Stage of lines every time we run the
program. Give the program so far a try. Press the green
flag, then press the space key.

With the ship up, speeding around the Stage
and leaving a trail, it's time to start work on
the rest of the game. First, click on the ‘paint
new backdrop' icon and fill the Stage with

black paint using the Paintcan tool. We're going to need
this later. Now click on the Scripts tab, as we're going to
control some of the core game functions from the Stage
itself. Now we need to set up four new variables, which
all of our sprites will share. We'll call them ‘EnemyCount’,
‘Energy’, ‘WaveCount' and ‘Score'. Set them all to ‘For all
sprites’ as you make them.

Here's the Stage's main stack. As you can
see, the first chunk just sets up the different
variables, then broadcasts a new message,
which we'll call ‘new wave'. The second
chunk is a ‘forever' loop that checks for two conditions.

In this game, we track the number of enemies launched
in each wave with the variable WaveCount and the
number of enemies destroyed by the player with the
variable EnemyCount. The first ‘if, then' block checks
whether all the enemies in the wave have been
destroyed, then launches a new wave. The second tracks
the player's Energy, and if it slips below 0 broadcasts a
‘game over' message, which will launch a whole Game
Over routine.

Certain things really slow Scratch down. Have too many ‘forever' loops in a program and
you can slow it to a crawl. Keep applying different colour or ghost effects to too many
sprites or clones, and your whole program can slow down. If a program you're writing is
running badly, have a good look through and see if you can find ways of making it more
efficient. For example, you might find you have two sprites set to detect each other when
you only need one, or you might have instructions running when a sprite is still that only
need to be running when it's moving. By fixing these issues, you could speed up your
program. We call this process optimisation.

OK. Let's put some enemies on the screen.

Again, the sprite is a pretty simple design,

and the first stack isn't too complex, either. It

tells the sprite to scale to 30%, then hide,
waiting to spawn a small army of clones.

This is

where our

second

stack kicks
in. This waits for the
'new wave' message.
This first clears any pen
lines from the Stage,
then changes
WaveCount so that this
new wave will spawn
one more enemy ship than the last wave. The ‘change
Energy’ block gives the player's Energy level a boost, and
after that the ‘repeat’ block creates clones according to
the current value of WaveCount. If WaveCount = 3, then
three clones will be spawned. If WaveCount = 4, four
clones will be spawned, and so on.

But what happens when they're spawned?
First of all, we want them to spawn in a
random location, facing a random direction.
As always, we do this by putting ‘'pick

random’ blocks in the x, y and ‘direction’ spots on the ‘go
to" and ‘point in direction’ blocks. The ‘show" block then
reveals the brand-new clone.

Next, we're going to use a ‘repeat until’
block. This block keeps on doing the same
things until a certain condition is met. Here,
it's when the sprite touches something
green, like the line being drawn by the player’s
spaceship. To set the block to this colour, run the

program and trace some green lines around the

Stage. Stop the program, then click on the little square
in the ‘touching color x?' block. Now, being very careful,
click on a green line to sample the colour. If you look,
you'll see that the colour of the little square changes
colour as it's over certain colours. Just watch for it

to turn green as you move the mouse around,

then click.

When the ship hits

the trail, we want it to

disappear, adding 1 to

the EnemyCount and
Score variables, and giving the
player's ship a small energy boost.
All it takes are three ‘change
variable by x' blocks and a ‘delete
this clone’ block, which we put last
to make sure the other blocks have
time to run. We also add a ‘play

Making your own blocks to define subroutines can

be incredibly useful. You save yourself work as you
don't need to keep adding the same blocks over and
over again, but you can also make your program more
efficiently. Think carefully about your program, and ask
yourself whether there are instructions that it might be
doing over and over again, and whether you can cut
these down by producing custom blocks, and using
those instead.

sound' block and set it to the ‘pop’ effect, which is added
automatically to every new sprite. This whole stack
attaches to the bottom of the ‘repeat until’ loop, as we
don't want any of these things to happen until our cloned
enemy ship hits a green line.

Until that happens, we just want the enemy
ships to move. That's handled by a Turn block
and a Move block from the Motion category,
along with an If on edge, bounce block. We

can change the behaviour of the ships by using different
values here. For now, 3 for the ‘turn’ block and 5 for the
‘move’ block gives us nice, graceful turns.

We've actually got the basics of the game in
place now, but if you try it you'll soon notice
one thing: it's all too easy. What we need is
risk — the risk that the player’s ship will run

out energy, and that this will mean game over. That's
easily done. First, add a new ‘change variable by x’
block to the player ship's main stack, right underneath
the ‘pen down’ block. Set it to ‘Energy’ and set the value
to -5. Now, whenever the ship is accelerating, it's

losing energy.

We also want energy to drain away when it

hits one of the blue ships. Add another ‘if,

then’ block to the stack, and set it to change

‘Energy by -50" when this sprite is touching
the enemy sprite.

Now let's make those enemies a little less
predictable. First, click on the enemy sprite in
the Sprites area, then go to Data and add a
new variable. We'll call this 'EnemySpeed’,
and we need to set it to ‘For this sprite only’. Next, slide
a new ‘set variable to x' block into place near the start of
the 'when | start as a clone’ stack, just beneath the ‘go
to" and ‘point in direction’ blocks. Set it to use the new
EnemySpeed variable, and use a ‘pick random’ block
for the value, set to minimum and maximum values of
3 and 6.

Just grab the
marker block
for the
EnemySpeed
variable and use it to
replace the value in the
‘move x steps' block. Each
cloned enemy ship will
now have its own random EnemySpeed value, which
controls how fast that ship will move.

Let's add one final visual flourish. Go to the

Pen category and add a ‘set pen colour to’

block and a ‘set pen size to' block to the

‘when | receive new wave' stack. Use a 'pick
random’ block for the value of the first block, set to a
minimum of 120 and a maximum of 160. Use a value of
1 for the 'set pen size'.

Next, add a ‘change pen color’ block and a
‘pen down' block to the ‘When | start as a
clone’ stack. Drop them carefully inside the
‘repeat until’ loop. Now, each wave of enemy

ships will leave a trail with a different colour, and that
colour changes as the ship flies around. The colour is set
for the whole wave in the ‘when | receive new wave'
block, then changed by the ‘change pen color’ block by
the stack that moves each clone.

We now have a reasonably tricky game. The
next step is to set what happens when the
player's
Energy

hits 0, and the game

is over. First of all, we

want the sprites to

stop what they're

doing, so that the game grinds to a halt. All

you need to do is add this stack to each of the sprites,
including the Stage, where the ‘stop’ block should read
‘stop other scripts in sprite’.

It's time to create a new sprite using the
‘Paint new sprite’ button. For this one, you
just use the Text tool and type ‘Game’, then
hit the Return key, and type ‘Over’. You can

choose whatever colour you like. When you're done, click
on the Scripts tab, and we'll start putting together the
main Game Over script for our game.

The first
stack puts
the Game
Over
message in position at
the centre of the
screen and reduces
the size to 10%. It
also adds a Ghost
effect, set to 100 to
make the message
entirely transparent.
The Stage is set for
a slick effect. The
second stack makes
the message bigger
and less transparent
with every repeat, until it pops out, large as life, in the
middle of the screen.

That's good, but wouldn't it be better to

tell the player what they scored? In fact,
wouldn't it be better still if we had some kind
of high score table? To pull that off, we're

If you like, our Game Over sprite can

also double up as a New Wave message,
informing the player when a new wave

is coming in. All you need to do is create

a new costume for the sprite and add

a new stack of code beginning with

‘when | receive new wave'. You can even
pinch the same animation from your Game

Over routine.

going to have to use lists. Start by making two new lists,
which we'll call HighScore and Names. Untick the
checkbox next to each list's block to hide it from view.

Pullin an ‘if, then, else block, then add the
‘x > x" operator next to the ‘if". Stick the
block for the Score variable into the space for
the first value, then grab the ‘item x of list’

block and put that in where the second should go.
Keep the item at 1 and make sure the list is set to
‘HighScore'. All we're doing is telling the program to
look at the current score and at the current high
score, and if the score is higher, to do what we tell it
to next.

What's that? Well, first of all we want it to

say ‘New High Score!’, then we want it to

ask the player for their name. For that,

we use a regular ‘say for x secs’ block,
followed by an ‘ask and wait’ block from the Sensing
category.

The next two blocks then insert the new high

score at the top of the HighScore list, and the

name that's typed in at the top of the Names

list. As long as nothing goes wrong, the two
will be linked, so whoever has the highest score — and so
the score at position 1 of HighScore — will have their
name at position 1 of Names.

It's time to show you one last Scratch
trick. We want the game to end with a
little high-scores table whether the player
has a new high score or not, but why

bother adding the same blocks twice? Scratch has a

useful Make a Block feature, where we can create a

useful stack of code from other blocks, then call that

stack — or

subroutine in

programming

language

— with a single

block. Go to

More Blocks,

click the Make

a Block button

and type ‘SayScores’ into the box. You'll see that

a new block, ‘define SayScores', has appeared in the

Scripts area.

This first block simply tells the player
their score. As you can see, we've used
the ‘join" operator here. This useful block
can be used to join some text and a

variable, or even two variables, in a sentence or a
statement. In this case, it says ‘Score: ‘ followed by the
current value of the Score variable.

You might remember this next trick from
the Racing Game project. Create a
variable called ‘Iltem’, then add these
blocks of script to the bottom of the stack.

The trickiest bit is the ‘say’ block, which uses multiple
‘join" operators to say the current value of the Item

variable, followed by the name of the player it refers to,
followed by that player's score. You might need a couple

of tries to get this right, so make sure it matches what
you see here.

We've defined what the SayScores

subroutine is and what it does. Now we

can put it to good use. Just drag our new

SayScores block into position both at the
bottom of the 'if, then' section of the ‘if, then, else’
block, and the ‘else’ section. We now get a readout
of high scores at the end of every game. Why not
give the game a go now? It should be ready for you
to play!

Colour Clash is now ready
for action. Give it a go!

There are loads of different things you can try out to
make this game even better and more exciting. Why
not add some sounds? Or how about adding some
music? You could also try out different values for the
movements of your ship and the enemy ships, or try
different amounts of Energy added or lost when you
finish a wave or when you collide.

Every change you make will have an impact on
the game. If you want to preserve the original, make
sure you use Scratch's Save a Copy feature to save one
version as your best version, and another version as a
testbed for your tinkering. Go on, have some fun and see
what you can come up with!

Your next steps
In coding

You're well on your way to mastering Scratch, so where do you head next
on your programming adventure?

Like Scratch, Alice is aimed
at programming novices, but
instead of 2D it works with 3D
models in a 3D environment.

t might be simple, but Scratch can create

a wide variety of games and animations.

Eventually, though, you’ll want to create

something that can work on a bigger screen or
at a higher resolution, or can use more advanced
graphics or even 3D. That’s not a problem if you're
ready to move onto a proper textual programming
language, but if you’re not there are alternatives.

Alice

Like Scratch, Alice is a graphical coding
environment designed to introduce novices to the
joys of coding. Its tiles work a little like Scratch’s
blocks, and it’s not difficult to move between the
two. However, while Scratch is designed to handle
2D games and animations, Alice works with 3D
models in 3D scenes. That doesn’t mean you can
create the next Pixar movie with Alice, but it does
mean you’ll get a good introduction to 3D graphics
as well as simple logic. In fact, the instructions

MIT App Inventor is similar to Scratch, but with the bonus that
you can produce apps that run on Android smartphones.

used in Alice are designed to reflect the standard

statements used in mainstream programming

languages like C++, C# and Java. It’s a good choice

if you want to work with something that’s a bit like

Scratch, but gives you more to get your teeth into.
www.alice.org

MIT App Inventor
Developed with the aid of Google, MIT App
Inventor might be seen as a ‘grown up’ Scratch.
It’s another block-based programming tool, and
if you're used to Scratch you’ll find a lot that’s
familiar. It’s a lot more complex, not to mention
intimidating to start with, but the effort could be
worth it. That’s because App Inventor produces
apps that can run on Android smartphones, so you
can use it to produce functional programs. It also
means you can play with the built-in features of a
smartphone, including the motion sensors, cameras
and the touchscreen. If you're starting to outgrow
Scratch, App Inventor could be for you.
appinventor.mit.edu/explore/

SNAP!
Formerly known as BYOB (or Bring Your Own
Blocks), SNAP! is based on Scratch and could be
described as an extended version. It runs along
similar lines and uses many of the same blocks,
but adds extra capabilities for more advanced
coding. Like Scratch, it can run in an ordinary
browser window, and runs in JavaScript. SNAP!
supports more technical features like first-class
functions, functional programming and recursion,
which won’t mean much to novice coders, but
will eventually mean a lot to budding computer
scientists. Its user interface and general style make
it feel like a Scratch for older students. SNAP!
programs can be made faster and more efficient
than their Scratch equivalents; you can probably
replicate most of what you can do in SNAP! in
Scratch, but it might take a little longer and require
some ingenuity. It’s a great step up from Scratch.
snap.berkeley.edu/

SNAP! is a great step up
from Scratch with extra
capabilities for more
advanced coding.

Stencyl

Stencyl builds on the principles of Scratch, but
adds a mass of features aimed at budding games
designers, including editors for sprites, and the tiles
and terrain that make up the scenery, plus script
blocks that support more of the specific needs of
games. Like SNAP!, Stencyl allows you to make

These graphical coding environments are great for learning, and great for putting
programs together fairly quickly. In the end, though, most novice programmers will
have to get their hands dirty with some good, honest code. There are various ways of
making the leap, but a handful of environments have been created specifically to help
new programmers — and particularly young new programmers — get stuck in. We'll be
looking at one of these, SmallBASIC, in the next chapter, but it's also worth looking at
Hackety Hack, which uses a graphics toolkit, shoes and a series of lessons to teach you
the rudiments of a useful language, Ruby. KidsRuby is another alternative, providing an
extremely simple environment for learning the language.

Stencyl is aimed at budding games designers, with the benefit
that Stencyl games can run on iOS and Android smartphones.

your own blocks and share them. It’s a little more
complex to learn than Scratch, but there are enough
similarities to soften the learning curve. Best of all,
Stencyl games can run on iOS and Android tablets
and smartphones, although the free version will only
let you test them. Stencyl has been used to develop
successful Flash games, not to mention games on the
iTunes App Store and the Google Play Store. If you
want to get further as a games developer, Stencyl
may be your ticket to the big time.
www.stencyl.com/

GameSalad Creator
GameSalad Creator is another visual coding tool
for games development, where you set up scenes,
bring in sprites (or actors), and set up the game
logic in a special backstage panel. With its more
object-oriented approach and its rules, physics-
based properties and behaviours, it works in
a different way to Scratch, but it’s possible to
produce some impressive 2D games, as you can
see from the efforts showcased in GameSalad’s
Featured Games Gallery. What’s more, GameSalad
games will run on Android, iOS and Kindle
devices, although you can’t publish Android
or Windows games to an app store without an
expensive Pro licence.

gamesalad.com/creator

Some impressive 2D games have been produced using
GameSalad Creator, as showcased here.

