Animate
stories

Contents

SECTION 1
Start coding

8 Why learn to code?
See why coding is a vital skill

10 Introducing Scratch
The perfect way to start coding

12 Scratch basics
Taking a tour around Scratch

14 My first Scratch program
Say “Hello World"” with a magic cat

16 The animal band
Get interactive with this musical show

16

20 Animate a Scratch cartoon
Make your own spooky cartoon

24 Shark vs food
Learn to use clones to save you time

28 Your first Scratch game
Build an addictive shoot-em-up

32 Remix the game
The game is good. Let's make it perfect

SECTION 2
Build your skills

4.0 Fun with Scratch graphics
Generate amazing patterns

15

46 Paint with Scratch
Make your own painting app

52 My Scratch racing game
Take this top-down racer for a spin

60 My Scratch quiz
Build your own brilliant quiz

68 My incredible Scratch app
This monkey-themed timer is great fun

72 Put yourself in the program
Webcam graphics and motion controls

78 Share your projects
Showcase your work to the world

80 Remix your projects
Turn Scratch projects into something new

82 My awesome Scratch game
Harness even more advanced techniques

90 Your next steps in coding
Where next on your coding adventure?

BASIC basics

94 Introducing SmallBASIC
Take your first steps into BASIC

96 Preparing to program
Installing and using SmallBASIC

104

98 My first SmallBASIC program
Coding doesn't get any easier than this

100 Sentence generator
Make crazy sentences from scratch

104 Create your own quiz
Code your own maths quiz game

110 SmallBASIC graphics
Learn about SmallBASIC's graphics
functions

SECTION 4
The next level

116 Introducing Visual Basic

Looking for more power?
Time to get serious about coding

122 Building your first Basic game
Have some fun coding your first
blockbuster game

132 Building a Visual Basic app
Create a working slideshow app

14.0 Where do you go next?
More projects, more languages, more code

144 GLOSSARY
All those vital coding terms defined

146 RESOURCES

BASIC

basics

Learning Scratch is just the start of your journey
into code. For our next steps, we're going to have
to dive into BASIC. This is a textual programming
language with a long and proud history, and one
that many novice programmers have cut their
coding teeth on. It's easy to learn and follow, but
has enough power to build professional apps.
While learning BASIC, you'll see how many of the

basic coding elements in Scratch are mirrored

in a textual language, and you'll also get to grips
with syntax, structure and other programming
fundamentals. You might not master it all straight
away, but you'll be surprised at how easy it
becomes with a little practice. Plus, while you're
learning the basics, you'll be working on some fun
projects that give you scope to try your own ideas.

Introducing
SmallBASIC

Make exciting
apps and fun
games by learning
a little bit of code

Sentence
generator

Discover how to
handle user input
and store
information

Preparing to
program

Before you can get
coding, you need to
install SmallBASIC
onto your PC

Create your
own quiz

Develop your skills
by making a game
that manipulates
numbers

My first
SmallBASIC
program

Take SmallBASIC
for a test drive with
a simple program

SmallBASIC
graphics

Get to grips with
coding graphics
to create a snow
globe and more

Introducin
SMAallBASI

If you're ready to move onto a textual programming language, Microsoft's
SmallBASIC has you covered with its simplicity and power

Whatis
SmallBASIC?

Where you
canit

How you can
use it

icrosoft SmallBASIC is a simple
programming language based on
BASIC, which stands for Beginner’s
All-Purpose Symbolic Instruction
Code. BASIC languages have been around for
years and come in a range of different varieties,
and that largely comes down to how simple yet
powerful a language it is. SmallBASIC differs from
other forms because it contains just 14 keywords.
This makes it easier to learn than other versions,
yet you can still make exciting applications and
amazing games just by learning a little bit of code.

This killer combination of simplicity and
power makes SmallBASIC a good first choice for
anyone who’s interested in becoming a software
developer and wants to go further than a visual
programming environment like Scratch. It’s ideal
for learning the basics of programming, and it’s
been adopted by many primary and secondary
school pupils. It also helps that you can think of
SmallBASIC as a cutdown version of Microsoft’s
Visual Basic, the most popular version of the
language, and one still used by many professional
programmers today. SmallBASIC and Visual Basic
share a similar structure and keywords, so if you
master SmallBASIC it’s easy to transfer your skills
and knowledge to Visual Basic.

Where can you find SmallBASIC?

The easiest answer is to go online and head to
smallbasic.com. You need to be careful when
searching on the internet, as there’s another
programming language with exactly the same
name. Once you get to the website, youll find
that SmallBASIC has an active online community
where you can find help and resources, not to
mention applications and games to download.
The website also hosts some simple tutorials, as
well as more detailed documents explaining every
aspect of SmallBASIC coding.

Unlike Scratch, which you access over the
internet, SmallBASIC needs to be downloaded
and installed. You’ll find a button for downloading
the package at the top right of the website. After
you’ve installed the program, take some time to
have a look around the website, as there are many
links to support you in getting started or pages

You can download SmallBASIC from the website, then access a
huge range of tutorials and sample programs.

Make exciting apps
and amazing games
just by learning a little
bit of code

that tell you how to get things done. The PDF
tutorial, step-by-step learning curriculum and
reference wiki can all be very useful when you’re
trying to learn, although we’re going to give you
plenty of help in these pages as well.

How can you use it?

Unlike Scratch, where you drag blocks of code

from the Blocks Palette to build your program, the
instructions in SmallBASIC - as in most high-end
languages - need to be typed manually. This not

only means that you’ll have to know the keywords, but
also that any spelling mistakes or missed symbols will
result in your program not compiling and therefore
problems with the end result. If there

are any errors, the SmallBASIC Editor will tell you
what line and position the errors are on, but it’s

Hundreds of budding
programmers are already
using SmallBASIC to create
and share their own games
and apps.

You can find and download programs from the SmallBASIC Gallery, then look at the source code

to see what makes them tick.

down to you to solve them. You'll also get a short
technical explanation of the problem, but the wording
can be hard to decipher if you're new to programming.

Importance of debugging
Fixing these errors, or ‘debugging’ as programmers
like to call it, is a crucial part of coding. You might
even find it weirdly satisfying one day. Plus, while
this all sounds like a headache, the process really
puts you in control. Change your code just a little,
and you can make sure the program works the way
you want it to, or even make it run more efficiently.

SmallBASIC is classed as a complier language
because, when you run the program, the computer
will check your code and create a standalone
file - a EXE file in Windows - which you can run
independently of SmallBASIC on a Windows
computer.

Another great feature of SmallBASIC is that,
when somebody creates a program or a game,
this can be quickly and easily shared with other
people online. All you need is an import ID for the
program, and you can quickly type in this code.
SmallBASIC will download their program for you
to test and play, without you having to manually
download files and load them yourself.

SmallBASIC on Facebook

You can also have a look at the SmallBASIC group
if you have access to Facebook. It’s a great place
to look at what other users around the world have
been making. This would also be a great place to
talk about and get feedback on all of the programs
that you make (www.facebook.com/groups/
smallbasic/).

Preparing
1o program

Before you can have fun coding with SmallBASIC, you first need to install
the software on your PC, and find your way around its simple interface

How to install
SmallBASIC

The basics
of using
SmallBASIC

What you can
do with the
SmallBASIC
toolbar

ou can download SmallBASIC by clicking

on the Download button in the top-right

corner of the website’s homescreen.

To install it, you’ll need a laptop or PC
running Windows XP, Vista, 7 or 8, and you’ll also
need the Microsoft .NET Framework 3.5 installed.
If you haven’t got this installed already, you can
download it for free from www.microsoft.com/en-
us/download/details.aspx?id=21.

Once you've downloaded the installer file, you
need to run it to install the program on your PC
or laptop’s local hard drive. The installer file is a
small 5.74MB, and even when the core software is
installed it will take only 7.40MB. The programs
are even tinier, so you don’t have to worry
about SmallBASIC taking up too much space on
your computer.

Install SmallBASIC in three easy steps
Double-click the installer file and the setup
wizard will start automatically. Click Next to
continue. The end user licence agreement is a
standard legal disclaimer for the use of the

software. Tick ‘I accept the terms in the license
agreement’, then click Next to continue.

The installer selects all the core files and
English language resources needed, but in
the unlikely event that you need to install
additional language translations, just select
them from the tree menu. Click Next to continue.

Confirm your installation options by clicking
Install, and the program will start the
installation. The progress bar will take just a
few seconds before it fills, and when it's done

IDE: Integrated Development Environment. A software
package and user interface that enable and support
coding or programming. One IDE might support
several different languages.

The SmallBASIC toolbar at the top of the screen
gives you instant, easy access to a range of
helpful and important features:

New: Creates a new SmallBASIC program

Open: Opens an existing SmallBASIC
program

Save: Saves the current program to its

Import: Imports a SmallBASIC program using
the Program ID from the online community

Publish: Publishes your program to the
internet for others to download

Cut: Cuts any highlighted text and saves it
to the clipboard, ready to use later

Copy: Copies any highlighted text to the

Undo: Takes back your last action
Redo: Brings back whatever it was you
last undid

Run: Executes your code so you can see
and test your program

Graduate: Converts your SmallBASIC

current location clipboard, ready to use later
Save as: Saves the current program to a

specific location clipboard earlier into the Editor

you can complete the installation by clicking the Finish
button. Now that you've installed SmallBASIC, you can
launch the program by clicking on the Start button, then
All Programs, then SmallBASIC in Windows Vista to
Windows 7, or by using the Search charm or clicking on
the icon in the Apps screen on Windows 8.

Using SmallBASIC

When you first load SmallBASIC, you’ll be greeted
with a simple interface that’s split into three
sections. You have a toolbar across the top of
the page with the kind of basic features youw’ll find
in any software package, including buttons for
Open, Save, Copy and Paste - not to mention the
all-important Run to run your program.

The Editor window is the main white area
where you’ll type your code. This is automatically
numbered when you go onto a new line, so if you
have an error the debug program will tell you the
line followed by the number of characters across.

It shouldn’t take you long
to get used to SmallBASIC'’s
simple interface.

Paste: Pastes any text you saved to the

program to a full Visual Basic program,
so that you can easily carry on working
on it when you're ready to get more
advanced

The side panel is a help feature that will
give you information about the built-in features in
SmallBASIC and their properties. This will change
depending on what you click or type in the Editor
window, so that you get the most helpful information,
where available.

My first Small-
BASIC program

It's time for our first steps into textual programming with what's probably
the simplest program you can possibly write

et’s start by taking
SmallBASIC for a test
drive. Our first program

How to type is a classic exercise in the
or paste software development world. Just
code intothe about everyone does the ‘Hello
SmallBASIC World’ program, regardless of what
Editor language they’re learning. It’s the
simplest program you can write, as
How to it just displays ‘Hello World’ back
use the to you in a text window. Still, it’s
TextWindow a good way to familiarise yourself
instruction with a new environment, and it
ensure you can enter text, compile
How to the program and see the results.
change the Type the following line of code

properties of
an object, and
so change its
looks and
behaviour

in the editor window:

TextWindow.WriteLine (“Hello
World”)

To execute your program, you
can click the Run button on the toolbar or press F5
on the keyboard.

Congratulations! You've just written your first
program, and you should see the text window with
your ‘Hello world’ statement. SmallBASIC will
automatically add a ‘press any key to continue’
message, which will close the text window and end
your first program.

Changing properties
TextWindow.Foregroundcolor = “Green”
When we call an object in SmallBASIC, we

can change the properties of it - the bits that
alter its appearance or behaviour. In our example,

‘Hello World’ is the simplest program you can write, and a great way to get used to a
new coding environment.

TextWindow is the object and Foregroundcolor is
one of the properties. Assigned colours need to be in
quotation marks: e.g. “Magenta”. As an experiment,
try replacing “Green” with another colour.
SmallBASIC, like many other programming
languages, goes through and processes your code

Try adding the following code to the start of your
program:

TextWindow.Backgroundcolor = “DarkBlue”

What effect do you think this will have?

one line at a time in the order that you typed it, so
when we assign a colour to the text window it will
stick with that colour until the end of the program
or until you change it again within the code.

Now let’s try to add different colours to our text
by entering the code below:

TextWindow.Title = “Mastering text
colour”
TextWindow.ForegroundColor = “Green”

TextWindow.Write (“I'm “)
TextWindow.ForegroundColor = “Cyan”
TextWindow.Write (“just “)

TextWindow. ForegroundColor “red”

TextWindow.Writeline (“unstoppable!”)
TextWindow.ForegroundColor = “Yellow”

Again, execute your program with the Run
button or Fs. As you can see, the order in which
you type your code is crucial to getting the desired
colour effect. The colour change at the end to
yellow is for the ‘press any key to continue’ text.
Without that change, it would still be red from the
previous word. In this example, we’ve used the

code TextWindowWrite and TextWindowWriteline.

Compile: The process where all the raw code for a
program and everything it needs to run is put
together as a single file that anyone with the
right operating system should be able to run. In
Windows, this would be a EXE file.

Execute: To launch your program. This is why many
Windows' programs have a EXE suffix jammed
onto the end.

Have a go at adding
different colours to your text.

Both are used to display text in the window,

but TextWindowWrite lets you keep writing

on the same line as the previous text, whereas
TextWindowWriteline goes to a new line at the end.

Remember
TextWindow displays just text

TextWindowWrite adds text to the current line
TextWindowWriteline adds text to the current

line, but the next output will be on the line
below

TextWindow.WriteLine (“*Hello World”)

You can see that your code can be split into three distinct sections: TextWindow calls
the non-graphical text window object; WriteLine instructs the computer to display text;
(“Hello World") gives the computer the words to display.

As software developers, we always have control over what the program does and how
it looks, so let's have some fun with our text window. Modify your first program with the

following code:

TextWindow.Title = “My First Program”

TextWindow.ForegroundColor = “Green”

TextWindow.WriteLine (“*I'm an awesome programmer!”)

Execute your program with the Run button on the toolbar or F5 on the keyboard.
Notice how your text window has changed from your first program because you've
changed the properties of the text window object in the code. You now have a title at the
top of the window and we have green text.

Sentence
generator

Putting something on the screen is one thing, but programs also need to
take some input from the user. We show you how

n our first basic project we learnt how to
display a message to the user, but what if we
need to ask the user for some information?

different set of answers. They’d vary, which is why
we call them variables.

How to use Where do we store it and how do we use it? Working with numbers

TextWindow. Handling input is a crucial part of programming, Now that we’ve mastered text input, let’s work
Read()toget whether you're building a word processor or a with numbers. SmallBASIC has a built-in library
information paint package, or just a website with a form that of functions that we can call on to use in our own

from the user

needs to be filled in. We’ve already covered how
you do this kind of thing in Scratch, but how do

code. These save us precious time, as we don’t have
to fully code each function and define its purpose.

How to use you do it in SmallBASIC? SmallBASIC has a math function that can

variables It’s easy. Type the following line of code in the perform a variety of maths tasks, such as dealing
editor window: with degrees and radians, or even finding a

How to join number’s square root. We’re going to use one such

words and TextWindow.Write (“Please enter your name: function to get a random number.

variables) Type the following code in the editor window:

to form

sentences name = TextWindow.Read() RandomNumber=math.GetRandomNumber (49)

How to call on TextWindow.Writeline (*I'm very pleased to Now follow that up with another line:

SmallBASIC's meet you ” + name)

built-in TextWindow.Writeline (“Your Random number

functions Now run the program. Notice how it waits is “ + RandomNumber)

To generate
random
numbers

until the user has entered a name before it
continues with the rest of the code. This is because
TextWindow.Read() pauses the program until the
Enter key is pressed.

Storing information while our program is
running is very important when we want to make
more complex programs or have any interaction
with the user. We call this storing variables. You

might remember working with variables in Scratch.

As in Scratch, a variable is a piece of data stored in
memory, ready to be recalled by our code. Imagine
we had a program that asked for the user’s name,
age and favourite sports team. If everyone gave the
same answers, we could hardwire these answers
into the code - we’d call these answers ‘constants’.
In real-life, however, everyone would give a

As you can see, we’ve concatenated our variable
into a sentence, just as we did with the name
earlier. Execute your program with Run or Fs and
you can watch a random number get generated.

Making a sentence generator
We’re going to combine both of our previous two
examples to create a program that asks for the

Concatenation: joining sentence fragments with variable
names to make full sentences.

name = TextWindow.Read () very pleased to meet you “ + name). Everyone gets the same greeting
message. We're displaying our greeting message as normal, but then

Take a close look at this instruction. Here, the TextWindow.Read() asks the we recall the stored variable (name) and add it to the end, using the

computer to pause and wait for the user to type in something, then store it code '+ name'. This is called concatenation. Well done! You can

in memory as a variable called ‘name’. now display text information on the screen as well as get information
Now take a look at the final line of code: TextWindow.Writeline(“I'm from a user.

user’s name, then generates silly sentences by using

random verbs and nouns. The trick to building v=math.GetRandomNumber (4)
a more complex program is to break down our
problem into sections, and to make sure we get our verb[1] = “walked *
events in the right order.
verb[2] = “answered “

For our sentence denerator to work, we need the
following events, in order. verb[3] = “danced “

Display a message asking for a name in a text verb[4] = “ate

window

n=math.GetRandomNumber (4)
Store that name in a variable

noun[l] = “the cake”
Generate and store a random verb from a list
noun[2] = “the cat”
Generate and store a random noun from a list
noun[3] = “the phone”
Display the user’s name followed by the stored
verb, then the stored noun in a text window. noun[4] = “the tango”
OK. We’re ready to start coding. Create a new TextWindow.Writeline (name + “ just “ +
page for the Code Editor and enter the following verb [v] + noun[n])
code:
Run your code by pressing run on the toolbar or
TextWindow.Write (“Please enter a name: “) tapping Fs.
name = TextWindow.Read () The way we generate the variables for the

verb and noun in this example is through a

Computers have to be told exactly what to do all the

time, so asking them for a truly random number is An array that contains just one value is known as a single
actually more difficult than you might think. Some dimension array. There are more complex arrays that can
languages use the current clock speed of the CPU to have multiple values. These have a cool sci-fi name: a

determine the number, as it's constantly changing. multi-dimensional array!

RandomNumber=math .GetRandomNumber (49) function works much like the Pick random operator block in Scratch.

You can change the number in the brackets to any positive number,
This code will generate a random number from 1 to 49 and assign and it will then generate a random number from 1 to that maximum
it to a variable called RandomNumber. The math.GetRandomNumber amount.

programming technique called an array. Using

this method, you can have the same variable name
followed by an index number to store multiple
values. Remember the lists in Scratch? Those lists
are really simple one-dimensional arrays. In this
example, we generate a random number and match
it to the index in the array. The syntax of an array is
very straightforward in SmallBASIC:

VariableName [number] = “Option”

Don’t forget to use square brackets with an
array, not the usual rounded brackets that we use to
display text.

We don’t have to stop here. We can keep adding
more words to the program’s vocabulary by adding
to the two verb and noun arrays. For example, we
could add the following under our list of verbs:

Our program generates silly sentences by using random verbs

SBSillySentence Code ext and nouns.
verb[5] = “jumped over Try changing the verbs and nouns in the list, or
start adding a greater selection. Just don’t forget to
verb[6] = “high-fived the * increase the maximum random number in brackets,

and do so for the nouns and the verbs!
then the following to our list of nouns:

noun[5] = “the moon”
noun[6] = “the pandas”
TextWindow.Writeline (name + “ just “ +
All we’d have to do is change the figures in verb[v] + noun[n])
brackets after the two =math.GetRandomNumber
instructions to the new total number of nouns or Take a closer look at this instruction. Here, we're
verbs, to read: displaying the user's name stored at the start, followed
by the word “just”, then we're calling our verb with a
n=math.GetRandomNumber (6) random index number, and the same again with our

noun. When we put all of the pieces in the correct order,
v=math.GetRandomNumber (6) we get a complete sentence, albeit a very silly one.

Credate your
own quiz

With a few simple instructions under our belt, we can now start to build
something more exciting. Let’s kick off with a maths quiz

How to use If

fter the last few projects,
you should have enough
skills to start building

more complex programs,

statements but we need to experiment with
to check working with numbers, especially
conditions addition, subtraction, multiplication
and make and division. With that in mind,
selections we’re going to make a game that
manipulates numbers. As always,
How to use before we start coding, we need to get
Elseif when a clear idea of what we want to do and
there are the order in which it will happen.
more than two Our first maths program is going to
conditions follow this process:
How to use Display game title in the text

loops to rerun
blocks of code

How to make
effective use

window

Our maths quiz program uses a If statement to check whether the answer is

Generate the first random number
between 1 and 100 and save that to
a variable

correct or not.

Begin the quiz
Start a new program and type in the following
code. When you’re done, run the program with Fs:

of subroutines
Generate the second random number between 1
and 100, and save that to a variable
TextWindow.WritelLine (Whkdkkkxkkkkkdkrkkkk
Display the addition equation to the user in the Maths QuUiz ****kkkskkkkhkkkxkr)
text window with both variables
firstnum=math.GetRandomNumber (100)
Ask for an answer in the text window secondnum=math .GetRandomNumber (100)
TextWindow.Writeline (“What is “ +
firstnum + “ + “ + gecondnum + “?7)

Save their response into a variable

Check if the answer typed in matches the total
of the two numbers TextWindow.Write (“Answer: “)
total = TextWindow.Read ()
Tell the user if they are correct or incorrect

If total = firstnum + secondnum Then

TextWindow.WriteLine (“Welldone, correct
answer!”)
Else

TextWindow.WriteLine (“*Sorry, that is
incorrect.”)
EndIf

This program uses a conditional statement to
check whether the answer is correct. If statements
are used frequently in many programming
languages to make choices and to interact with
the user. In SmallBASIC, the structure of an If
statement follows:

If condition Then

Code if the condition has been met

Loops in SmallBASIC work
just like ‘repeat’ and 'forever’
blocks in Scratch.

Else

Code if the condition has not been met
EndIf

Look at the If statement we’ve just typed in:

If total = firstnum + secondnum Then
TextWindow.WriteLine (“Welldone, correct
answer!”)
Else
TextWindow.WriteLine (“Sorry, that is
incorrect.”)
EndIf

Our condition in the statement was to check if
the total variable is equal to the sum of the first
and second variables, which gives us a true or
false scenario that works well with mathematical
equations, as they’ve either entered a correct or
incorrect answer.

Using loops
One annoying problem we have with our program
is that we only get one maths question before the
program ends and we have to restart it. Wouldn’t it
be great if we could tell the computer to go back to
the beginning of the code and ask another question
automatically? Well, luckily SmallBASIC can do
that by using a simple loop. Remember the ‘repeat’
and ‘forever’ blocks in Scratch? Loops work in
exactly the same way.

Add the following code to line 2 within your
existing program, just above generating the first
random number and below the title:

StartLoop:

Add the following code to the very end of the
code after the If statement block:

Goto StartLoop

What we’ve done is to create a marker at the top
of the program called StartLoop. We can use any
words we like for our marker, as long as they’re
joined together with no spaces and there’s a colon
at the end. When the code reaches Goto StartLoop
at the end, it will head back to the top and rerun
the code after our marker to repeat our code. Run
your program again and you should get an infinite
amount of questions, each one randomly generated.

So far, we’ve been working only with addition
(+), but we can just as easily change this to
subtraction, multiplication or division by altering
the equation symbol in the first line of the If
statement.

Here, we've further
developed our quiz using
blocks of reusable code called
subroutines.

To change your program to test subtraction:

If total = firstnum - secondnum Then

To change your program to test multiplication:

If total = firstnum * secondnum Then
To change your program to test division:

If total = firstnum / secondnum Then

Try changing the maximum random number in the
brackets to make your game harder or easier.

The only cosmetic change you’ll need to make is
where you display the equation to the user (line 6),
as it will still have the addition symbol between the
two numbers.

Just as if we were using spreadsheet software,
the symbols for multiplication (*) and division
(/) will differ to what you might be used to from
your maths lessons at school. Multiplication is
normally just an x symbol from the alphabet, but
the computer needs the x to form different words,
so we can’t use that. There’s also no standard
division symbol on a keyboard, so we use the * and
/ symbols to represent them.

Developing the quiz
The great thing about programming is that once
you have the basic code sorted out, you have a solid
foundation on which to add extra features. Here,
we need to give our program greater functionality
by letting the user decide what area of arithmetic
to practise, instead of having to change the source
code manually. So, we’re going to code a menu
system, and the user can select which area of maths
to improve.

Our new and improved maths quiz program is
going to follow this process:

Display game title and menu options in the text
window

Ask the user for their input

If the user selects Addition, call the subroutine
code

If the user selects Multiplication, call the
subroutine code

If the user selects Subtraction, call the
subroutine code

The trick is to create reusable blocks of code
called subroutines. These subroutine blocks will
perform one of the arithmetic operations, such as
a block for subtraction and one for multiplication,
depending on what the user selects from the menu.
If you remember the ‘make’ and ‘define’ blocks
in Scratch, these effectively created subroutines
that could be reused again and again. Creating a
subroutine in SmallBASIC is very easy. You just
need the Keyword sub followed by the name of
your subroutine. Any code after this point will
be part of that subroutine until you close it
with EndSub. To call your subroutine, just use
the name of it followed by two brackets: e.g.
Addition).

Modify your existing program or create a new
one with the following code:

TextWindow.WriteLine (W *xxkkkkkkkkkxkk*
Maths Quiz **kkkkkkkkkkkkkkxo)

Our new and improved
maths quiz program!

TextWindow.WriteLine (“*Select an option
from the list below:”)

TextWindow.WriteLine (“1. Addition”)
TextWindow.WriteLine (“2. Subtraction”)
TextWindow.WriteLine (*3. Multiplication”)

TextWindow.Write (“Type 1, 2 or 3: “)
menu = TextWindow.Read ()

Sub Addition
AdditionLoop:
firstnum=math.GetRandomNumber (100)
secondnum=math.GetRandomNumber (100)
TextWindow.Writeline (“What is “ +
firstnum + “ + “ + secondnum + “?”)
TextWindow.Write (“Answer: “)
total = TextWindow.Read ()
If total = firstnum + secondnum Then
TextWindow.WriteLine (“Welldone,
correct answer!”)
Else
TextWindow.WriteLine (“Sorry, that
is incorrect.”)
EndIf
Goto AdditionLoop
EndSub

Sub Subtraction
SubtractionLoop:
firstnum=math.GetRandomNumber (100)
secondnum=math.GetRandomNumber (33)
TextWindow.Writeline (“What is “ +
firstnum + “ - “ + secondnum + “?”)
TextWindow.Write (“Answer: “)

total = TextWindow.Read()
If total = firstnum - secondnum Then
TextWindow.WriteLine (“Welldone,
correct answer!”)
Else
TextWindow.WriteLine (“Sorry, that
is incorrect.”)
EndIf
Goto SubtractionLoop
EndSub

Sub Multiplication
MultiplicationLoop:
firstnum=math.GetRandomNumber (12)
secondnum=math.GetRandomNumber (12)
TextWindow.Writeline (“What is “ +
firstnum + “ * “ 4+ secondnum + “?7)
TextWindow.Write (“Answer: “)
total = TextWindow.Read()
If total = firstnum * secondnum Then
TextWindow.WriteLine (“Welldone,
correct answer!”)
Else
TextWindow.WriteLine (“Sorry, that
is incorrect.”)
EndIf
Goto MultiplicationLoop
EndSub

If menu = 1 Then
Addition()
Elseif menu = 2 Then
Subtraction ()
Elseif menu = 3 Then
Multiplication()
EndIf

Using Elseif

In SmallBASIC, we have to code all of the
subroutines before we can call them - this is

why the menu selection code is at the end of

the program. You’ll have also noticed that the If
statement we're using now differs from the one we
used in our first maths program, and we have a new
keyword ‘Elseif’. Because our menu has more than
two possible options, we need to use Elseif to give
us more conditional options. The syntax for using
Elseif is very simple:

If conditionl then

Subroutine: An independent block of code that can be
recalled from within the main program.

Add as many Elseif
statements as you like,
depending on how many
conditions you have to
deal with.

Run this code

Elseif condition2 then

Run this code

Elseif condition3 then

Run this code

Else

Run this code

End if

You can add as many Elseif statements as you
like, depending on how many conditions you have
to deal with. The final statement is just an Else, as
this is basically saying that if it’s none of the above
(conditioni, condition2 or condition3) do the last
piece of code in the list.

Adding a progress meter

The great thing about coding is that you can always
add another feature. To make our program feel
even more useful, we can add a progress tracker,
so the user can see how many questions they’ve
attempted, how many they’ve answered correctly
and a percentage of their success. To do this, we’re
going to need three new variables: one to keep

a count of how many questions have been asked
(questions), one to keep track of correct responses
(score) and one to calculate the percentage
(percentage). To start with, add the following code
above the first addition subroutine:

score = 0
questions = 0
percentage= 0

We need to amend each subroutine to include
our score tracker, so let’s start with the Addition
subroutine. First, let’s calculate how many
questions we have correct: find our If statement
that congratulates the user and just under that add
the following code:

score = score + 1

This now means that after every correct
question we’re getting the current value of our
variable score and moving it up by 1.

Now we need to keep track of how many
questions have been asked so far by using our
Questions variable. Add the following code
underneath the If statement in our Addition
subroutine:

questions = questions + 1

Again, just like our correct score counter, we're
getting the value in the Questions variable and
moving it up by 1.

If we have the number of questions correct and
the total number of questions, we can calculate
the percentage and keep that in a variable. Add the
following code underneath our questions counter:

percentage = Math.Round((score /
questions) * 100)

In this line of code, we're first taking score and Test your program to make
dividing it by questions, then multiplying by 100 to sure the score tracker is
find the percentage number. We then take the result working for every subroutine.
and store it in the variable called Percentage. We're
also taking advantage of another built-in function
in SmallBASIC: Math.Round. This gets our final
number and rounds it either up or down. Lastly,
display the score tracker with the percentage at the
start of every question. Add this code underneath
where we generated our random numbers:

TextWindow.Writeline (“Your score is: “ +
score + “ out of “ + questions + “, which
is “ + percentage + “%”)

percentage = Math.Round ((score /
questions) * 100)

In this line of code, we've had to use a number of brackets.
Math.Round needs a set of brackets that surround the
entire equation, so that the number produced from

the division gets rounded to a whole number. The

brackets inside calculate the score divided by questions
variable before it's multiplied by 100. In your maths

lessons at school, you use BIDMAS (Brackets — Indices —
Multiplication — Addition — Subtraction) to order the maths
operation so you get the correct number. We follow the
exact same rules when we're programming.

This code is basically a long line of variable
concatenation that forms a complete sentence. It
works in the same way as earlier in the program,
when we displayed the questions with our random
numbers in for the user. Don’t forget normal text
is just displayed within quotations marks (“). We
add in our variables by using the plus sign, variable
name, then another plus sign, so add in the next
piece (+ variablename +). The only time we don’t
need the final plus sign is when we’re at the end of
our sentence.

Our final addition subroutine should now look
like the following, with the new code highlighted
in red:

Sub Addition
AdditionLoop:
firstnum=math.GetRandomNumber (10)
secondnum=math.GetRandomNumber (10)

TextWindow.Writeline (“Your score is:
“ + score + “ out of “ + guestions + %,
which is “ + percentage + “%”)

TextWindow.Writeline (“What is “ +
firstnum + “ + “ + secondnum + “?”)
TextWindow.Write (“Answer: “)
total = TextWindow.Read ()
If total = firstnum + secondnum Then
TextWindow.WriteLine (“Welldone,
correct answer!”)
score = score + 1
Else
TextWindow.WriteLine (“Sorry, that
is incorrect.”)
EndIf
questions = questions + 1
percentage = Math.Round((score /
questions) * 100)
Goto AdditionLoop
EndSub

Of course, to complete our full quiz, we’re
going to need to add those highlighted bits of code
to the subtraction, multiplication and division
subroutines in exactly the same place for each one.
Remember to test your program to make sure the
score tracker is working for every subroutine.

Try changing the program so that the user can select the
difficulty of questions, which would be the highest values
of your generated numbers. You can put variables in the
random number brackets instead of numbers — math.
GetRandomNumber(variablename)

SmallBASIC
graphics

We've tangled with text and messed around with mathematics. Now it’'s
time we got to grips with coding graphics

How to
use the
Graphics
Window
function

How to
change the
properties of
the shapes

How to
position
shapes by
xandy
coordinates

How to

use Shapes.
Animate to
move shapes

How to use
For Loops

How to use
Program.Delay
to control the
speed of your
program

How to use
SetOpacity
to control
transparency

o far, we’ve been working
exclusively with SmallBASIC’s
TextWindow object. However,
when dealing with graphics,
animation and drawing, we could call
the GraphicsWindow.
Just like the TextWindow object,
GraphicsWindow can be called into
a program, and it has a number of

properties we can modify. We can call This program shows you how to generate a random colour and create a
shape outlines or filled shapes into rectangle with random coordinates, and more.

the graphics window, including lines,
rectangles, triangles and ellipses.

Try out the code below to see some of these
shapes in action:

GraphicsWindow.Title = “Graphics”

GraphicsWindow.BackgroundColor =
“DarkBlue”

GraphicsWindow.Width = 200
GraphicsWindow.Height = 200

GraphicsWindow.PenWidth
GraphicsWindow.PenColor

8
“LightBlue”

GraphicsWindow.DrawLine (10, 10, 10, 190)

Arguments: Values that can be changed in properties of
an object such as its position, height, width
and colour. Programmers will usually refer to
arguments as ‘args’.

GraphicsWindow.PenWidth = 5
GraphicsWindow.DrawLine (22, 10, 22, 190)
GraphicsWindow.PenWidth = 2
GraphicsWindow.DrawLine (30, 10, 30, 190)
GraphicsWindow.PenColor = “Blue”

GraphicsWindow.FillEllipse (110, 110, 80,
80)

GraphicsWindow.DrawEllipse (40, 110, 80,
80)

GraphicsWindow.FillRectangle (40, 10, 70,
72)

GraphicsWindow.DrawRectangle (120, 10, 70,
70)

Drawing shapes in random locations
We can now add static shapes to our graphics
window, but that’s not very exciting, is it? Let’s try
to use the SmallBASIC code to make something

Just like with TextWindow object, we call the
graphics object with GraphicsWindow, then
define the type of shape, and whether it has

a solid fill colour. The first two numbers in the
brackets are the x and y pixel coordinates of
the graphics window. To give you a point of
reference: in a SmallBASIC graphics window
that is 200 x 200 pixels, the top-left corner of
the graphics window is coordinates 0,0 and the
bottom right has the coordinates 200,200. The
next two numbers after the coordinates in the
brackets are the width and height of the shape
in pixels.

Drawing lines and triangles is a slightly
different process. The first two numbers for
DrawLine are the x and y coordinates, which
define where the start of the line should go. The
last numbers are the x and y coordinates for
the end of the line. The program then draws a
straight line between those two points. When
you call the triangle shape DrawTriangle you
have six numbers in the brackets, as you have to
provide x and y coordinates for each of the three
points of the triangle.

Just as with our text colour, we can change
the colour properties of our shapes, and will keep

less predictable. Our next program is going to
follow
this sequence:

Set the background colour to black
Start a loop marker
Generate a random colour

Generate a random number (max 640) and
assign it to a variable called x

Generate a random number (max 480) and
assign it to a variable called y

Create a rectangle (20 x 20) with the random x
and y coordinates

Try adding your own shapes to get used to how the
coordinate system works. If you get stuck, change just
one number in the brackets and see what effect that has
on the shape or its position in the GraphicsWindow.

GraphicsWindow.PenColor
“Magenta”

Our program in action!

that colour until it's changed later in the code:

GraphicsWindow.PenWidth = 2

We can now start to tell our program the width
and height of our graphics window in pixels,
using the following code:

When drawing lines, you can specify how thick
the line can be using the following line of code
before the drawing the line, and again it will
keep that thickness until it's given another value:

GraphicsWindow.Width = 200

GraphicsWindow.Height = 200

Loop back around to the start of the loop marker

Create a new code window and add the
following code.

GraphicsWindow.BackgroundColor = “Black”
StartLoop:

GraphicsWindow.BrushColor =
GraphicsWindow.GetRandomColoxr ()
x = Math.GetRandomNumber (640)

Math.GetRandomNumber (480)

Yy

GraphicsWindow.FillRectangle(x, y, 20,
20)

Program.Delay (100)
Goto StartLoop

Just before the end of the code, we’ve added
a new feature called Program.Delay(100), which
will pause the program before it loops around,
giving us the ability to change the speed in which
the program runs. The length of that pause can
be changed with the number in brackets, which

Have a go at animating a
square across the screen.

represents time in milliseconds: try making that
number higher and lower from its value of 100 and
see what effect that has on the program.

Another good experiment with this program
is to change the size of the rectangle from 20, 20
to values higher or lower, but you’ll need to keep
them the same if you want a perfect square.

Animating shapes
Now we can try to animate a square across the
screen by using some new code keywords, Shape.
AddRectangle and Shape.Animate.

Quickly test the following code in a new window:

MySquare = Shapes.AddRectangle (100, 100)
Shapes.Animate (MySquare, 530, 0, 3000)

We're defining the shape called MySquare, just
like we would a variable, and giving it a rectangle
that is 100 x 100 in width and height. Now that
we have a shape name defined, we can use
Shapes.Animate to move MySquare from its
starting 0,0 coordinate to §30,0 coordinate over a
time span of 3,000 milliseconds.

Make a snow globe simulator
For our final graphics program, we’re going to
create a snow globe simulator, in which we can
change the variables to switch between a gentle
snowstorm or a raging blizzard. The mechanics of
the program are simple: we’re creating an array of
ellipses off screen at the top, and randomising the
start and end position. We can then use variables
to control how our simulator works, changing the
speed, size and density of the snowflakes.

Create a new code window and add the

Shapes.Animate (MySquare, 530, 0 , 3000)

We call our animation function with Shapes.Animate.
Our first argument in brackets is the name of the shape —
MySquare. Next, we have to give coordinate locations of
where the shape will finish (530,0) followed by how long
the animation will take in milliseconds (3000).

following code:

GraphicsWindow.BackgroundColor = “Black”
GraphicsWindow.BrushColor = “White”

GraphicsWindow.fil1lEllipse (300, 400, 75,
75)

GraphicsWindow.fillEllipse (315, 370, 45,
45)

GraphicsWindow.BrushColor = “black”

GraphicsWindow.fillEllipse (322, 380, 10,
10)

GraphicsWindow.fil1lEllipse (340, 380, 10,
10)

flakesize = 7
flakespeed = 3000
flakedensity = 50
rows = 20
columns = 20

For r = 1 To rows
For ¢ = 1 To columns
startpos = Math.GetRandomNumber (700)
opacity = Math.GetRandomNumber (120)
GraphicsWindow.BrushColor = “White”
snow [r] [c] = Shapes.
AddEllipse (flakesize, flakesize)
Shapes.SetOpacity (snow([r] [c],
opacity)
Shapes.Move (snow [r] [c], startpos, -30)
EndFor
EndFor

Instead of squares, try changing the code so that it
produces ellipses or triangles. While you're at it, see

if you can modify the program so the rectangles that
appear each time are random sizes. Have a look at how
we've used our x and y variables for the shape position
to help you.

Here’s our snowman
enjoying a gentle snowstorm!

The mechanics of the snow
globe simulator are actually
pretty simple.

For r = 1 To rows
For ¢ = 1 To columns

endpos = Math.GetRandomNumber (700)
Shapes.Animate (snow[r] [c], endpos,

445, flakespeed)

Program.Delay (flakedensity)

EndFor

EndFor

This program uses the For loop, which repeats
a block of code a certain number of times
using a counter. When the counter reaches the
predetermined value - which can be a variable value
- the loop will stop and return to running the main
program. The syntax for the For loop is simple:

For condition
code to loop
EndFor

As this is a simulator, you can change the
variable numbers and see what happens within the

Syntax: The structure and order of the code in a
program. Syntax is a vital part of any textual
programming language. Ignore syntax, and your
program won't run.

globe. Change the following variable for the size of
each virtual snowflake (ellipse):

flakesize = 7

The following variable is put into the Delay
function at the end; the lower the number
(milliseconds), the more snowflakes will be
released simultaneously:

flakedensity = 80

The next variable is the speed at which each
snowflake will fall from the start to the end of its
run. Remember, the number is in milliseconds so
the lower you go, the faster the snow will fall:

flakespeed = 3000

To make our snow more realistic, we’re using
the code SetOpacity, which will work from
random numbers, o being invisible and 100 being
completely visible. This means that each square or
virtual snowflake that’s created will have a random
transparency value, so some snowflakes are more
visible than others, giving the illusion of depth
and size. You could set this number higher than
100 as we've done, because then there’s a greater
probability of generating higher numbers,
although anything generated over 100 will still be
treated as 100.

Try putting Program.Delay(3000) after the last Shapes.
Animate code, then try moving it to another coordinate
location with another line of animation. See if you can
make the square move around the perimeter of the
graphics window with a delay separating each line of
new animate code.

