Animate
stories

Contents

SECTION 1
Start coding

8 Why learn to code?
See why coding is a vital skill

10 Introducing Scratch
The perfect way to start coding

12 Scratch basics
Taking a tour around Scratch

14 My first Scratch program
Say “Hello World"” with a magic cat

16 The animal band
Get interactive with this musical show

16

20 Animate a Scratch cartoon
Make your own spooky cartoon

24 Shark vs food
Learn to use clones to save you time

28 Your first Scratch game
Build an addictive shoot-em-up

32 Remix the game
The game is good. Let's make it perfect

SECTION 2
Build your skills

4.0 Fun with Scratch graphics
Generate amazing patterns

15

46 Paint with Scratch
Make your own painting app

52 My Scratch racing game
Take this top-down racer for a spin

60 My Scratch quiz
Build your own brilliant quiz

68 My incredible Scratch app
This monkey-themed timer is great fun

72 Put yourself in the program
Webcam graphics and motion controls

78 Share your projects
Showcase your work to the world

80 Remix your projects
Turn Scratch projects into something new

82 My awesome Scratch game
Harness even more advanced techniques

90 Your next steps in coding
Where next on your coding adventure?

BASIC basics

94 Introducing SmallBASIC
Take your first steps into BASIC

96 Preparing to program
Installing and using SmallBASIC

104

98 My first SmallBASIC program
Coding doesn't get any easier than this

100 Sentence generator
Make crazy sentences from scratch

104 Create your own quiz
Code your own maths quiz game

110 SmallBASIC graphics
Learn about SmallBASIC's graphics
functions

SECTION 4
The next level

116 Introducing Visual Basic

Looking for more power?
Time to get serious about coding

122 Building your first Basic game
Have some fun coding your first
blockbuster game

132 Building a Visual Basic app
Create a working slideshow app

14.0 Where do you go next?
More projects, more languages, more code

144 GLOSSARY
All those vital coding terms defined

146 RESOURCES

Section 4

The next
level

With the help of SmallBASIC, we've learnt to version of a proper programming environment —
put together simple BASIC programs. Yet while the same tools used by millions of professional
SmallBASIC is a surprisingly powerful and software developers every day. That means you'll
easy-to-learn implementation of the language, have to cope with a little more complexity, but
there will come a time when you'll need something you'll soon find that it isn't as hard as it first looks.
more flexible, and with more built-in features. By the end of this chapter, you'll have some
That's where Visual Basic comes in. serious coding skills. The only question is, where
For the next few projects, we'll be using a free will you take them next?

Page 116 Page 122
Introducing Building your

Visual Basic first Basic

, game
If you're ready for

more pngramming Have some fun
power, Visual Basic building a version
Is for you of Breakout

Page 132 Page 140

Building a Where do you
Visual Basic go next?

app _ _

Your journey into
Get more complex coding has only just
with an image begin. What will you
slideshow app try out next?

Introducing
Visual Basic

SmallBASIC can take you a long way on your coding journey, but eventually
you'll want a little more power. That's where Visual Basic comes in

About VB, and
how to get it
for free

How to work
with buttons,
forms and
code

How to code a
simple control
panel

isual Basic is part of Microsoft’s Visual
Studio, an IDE (Integrated Development
Environment) suite of programming
tools that lets you work with a variety
of coding languages, including C++, C# and Visual
Basic. The full professional package doesn’t come
cheap, but there’s a free edition, Visual Studio
Express 2013 for Desktop, which gives you access
to a still very powerful set of tools and built-in
functions, with which you can build almost any
kind of program, game or app. The latest 2013
version requires you to sign up for a Microsoft
account, which you’ll need to do in order to use the
free version after the 30-day trial period is up.

Where can you find it?
There are several versions of Visual Studio, so
make sure you search for the free version - Visual
Studio Express 2013 for Desktop - rather than the
high-end professional versions. You can find it at
www.visualstudio.com/downloads/download-
visual-studio-vs#d-express-windows-desktop
The Visual Studio website also has a variety of
guides and documentation, covering everything
from setting up the software to developing
applications. You can find these at www.
visualstudio.com/get-started/overview-of-get-
started-tasks-vs

How can | use it?

Unlike Scratch or SmallBASIC, Visual Studio is a
professional piece of software that you'd use as a
professional developer for the Windows platform.
The free version that you’ll install will look nearly
identical to the full version, so when you first start
using it the menus and buttons may seem daunting.
Don’t worry. We’re going to guide you through all
the sections that you’ll need to use at first.

As Visual Studio itself covers a variety of
languages and can be used for many different
Windows applications, when you first create a new
application it will ask you what type of program
you’re going to create. For all the examples in the
book, we’ll choose the most common application
type, which is a Windows Forms Application.

The code for Visual Basic isn’t a million miles
away from the code you might use for SmallBASIC,
but now we have full control over our interface.
We can design and draw buttons, forms, textboxes,
and label boxes with our mouse before we type any

There are several versions of Visual Studio, so make sure you
search for the free version.

The code for Visual
Basic isn't a million
miles away from the
code for SmallBASIC

code. All of these visual components are located in

a toolbox on the left of the screen. You can either
scroll through these or search for a pre-made
object and drag it onto the form.

Visual Basic is an event-driven language, so
when we’re ready to add code we double-click
on an object, such as a button, then add the
code that works behind that button. Your Visual
Studio environment will try to help you code by
guessing what you’re about to type. We call this
‘Intellisense’. It works a bit like predictive texting
on mobile phones, but the computer knows
the language keywords and every property, so
you can use Enter or space on the keyboard to
automatically complete the words you’re typing.

What is Solution Explorer?
Many of the options we’re going to change when

Intellisense works a bit like predictive texting on mobile
phones, automatically completing words you type.

Naming your forms and controls is important, both
because you want to make your code understandable
and because you'll have to reference them in the code by
their name. In order to remember what Button1, Button2
and Button 3 are, we'll give them descriptive names. A
method developers use to start a name is to shorten the
type of the control or form down to three letters first,
followed by a descriptive name without any spaces:
Buttons — btnStart Textbox — txtPlayerName
Labels — IbIPlayerScore Forms — frmMainGame

Many of the options
we’re going to change when
designing the GUI in Visual
Basic will be through the
Properties window.

All of the visual components are located in
the toolbox.

designing the GUI in Visual Basic will
be through the Properties window
on the left of the screen. This menu
will change depending on what item
is selected. Also, above the Properties
window you’ll see the Solution
Explorer: this will tell you the names
of your documents and resources,
as well as what forms you’ve created
inside the current project.

Just like SmallBASIC, programs
are executed with the Run button
at the top of the page. This gets the
computer to compile your code and
creates an EXE file. If there are any
problems or bugs, you’ll get a report
at the bottom of the screen. As Visual
Basic is a more complex language,
you're more likely to, and the help you
get on any problems can use some
quite technical wording. Luckily, the
internet can help. If you get stuck with
an error, try typing it into Google or
Bing, and you’ll often find some other
programmers talking about the issue.

Our first Visual Basic app
To get familiar with the IDE and the
programming language, we’re going
to create a simple app that allows
the user to change the colour and
dimensions of a form and its buttons,
as well as add a counter and hide
the buttons.
Start Visual Studio and create a
new Windows Forms Application.
Change the name of the project to
ControlPanel and click OK. You’ll
get the default form (300 x 300
pixels), which can be resized. Drag
the lower-left corner out so we have more room
to add controls. With the form selected, have
a look through the Property window on the
right of the screen. This menu will show all the
properties (name, colours, appearance, etc) of our
form, and we can change and customise all of the

If there are any problems or bugs, you'll get a report at the
bottom of the screen.

Start Visual Studio and

create a new Windows Forms

Application.

Find the Name property,
and change this to
frmControlPanel.

values. Scroll through your list and find the Name
property, and change this to frmControlPanel.

To add buttons to our form, we need to look
through the Visual Basic toolbox located on the
left of the screen, which has a list of pre-made
controls that we can drag to our form; by default,
it will be called Buttoni1. Find the control Button

in the list and either double-click to automatically
draw the button to the form, or single-click and
manually drag the size of button you want. Your
first action after adding a new control is to rename
it to btnHeightMax. Before then, change the Text
property (the wording on the button) to Form
Height +. Next, create another button next to your
first one and rename the button btnHeightMin and
change the Text property to Form Height -.

We’re now ready to start adding our first
piece of code. Double-click your first button
btnHeightMax and youw’ll be taken to Code view,

After adding a new control, rename it to btnHeightMax.

where Visual Studio has already put in all the
required code to make a subroutine. Don’t change
or delete any of this code, as this will probably
result in an error that you may not be able to fix.

We’re going place our code in the middle of the
Button subroutine, which you can find after the
Private Sub line and before the End Sub line. We
want our button to increase the height of our form
by 10 pixels with the following line of code:

Me.Height = Me.Height + 10

At the top of the page, you’ll now have two tabs
with your Form name, so you can switch between
the form design and our Code view. Try switching
between the two now, so you know how to get from
one to the other.

Double-click the btnHeightMin button on the
form, and Visual Studio will again add the initial
subroutine code. Just add the following code in
between the Private Sub line and the End Sub line:

Me.Height = Me.Height - 10

Place your code in the middle of the Button subroutine.

To test that our program works so far, we can
compile and execute it using the green Play
button at the top of the page, or by pressing Fs.
Try your btnHeightMax button and see if every
click increases the height by 10 pixels, then test
your btnHeightMin button to see if it does the
opposite. You won’t be able to make any changes
to your form or code while the program is
running, so close it with the Stop button, next to the
Play button.

Me.height = Me.height + 10

As in SmallBASIC, we refer to the object first, then use
a full stop and refer to its property. In Visual Basic, we
can't directly refer to the name of the form that we're
currently using, so we use the word: Me. Our code is
instructing the computer to get the box’s current height
in pixels and add 10 to that number.

Create a selection of other
colours, which the user can
decide to change to.

You have all the skills now to add two more
buttons that will increase and decrease the width
of the form. The code will nearly be identical; just
remember to change the width not the height.

Changing colours

Now we’re going to spice things up by giving our
form colour themes. Create a new button called
btnRed and change the display text to say Red.
To emphasise that this button is going to change
something to red, we can make the actual button
red by changing BackColor open to red in the
Property window. When you’re ready to add the

Me.BackColor = Color.Red

Again, we can't reference our form by name while
we're working inside it, so we use Me.Backcolor to
identify what's going to be changed, then we choose
a colour using Color.Red. If you just type the word
color, Intellisense will give you a list of valid names to
choose from.

To emphasise that this button is going to change something
to red, we can make the actual button red.

code, double-click the red button and type the
following statement:

Me.BackColor = Color.Red

Run your program again and see what effect
your red button has!

Repeat the task we’ve just completed with the
red button to create a selection of other colours,
which the user can decide to change to. Each time,
rename the button, change the displayed text and
manually change the button colour to match the
colour it will be in the code. Arrange your buttons
in a logical order and add a groupbox from the
Toolbox menu, which can be drawn around your
buttons to give them a separated border. Then,
change the text to Colour Palette.

Adding a Reset button

We're going to add a Reset button to our form,
which will revert all of our dimensions back to the
state when you first started the program, and we’ll
set the colour back to the starting grey, so it will
look like we’ve just restarted the entire program.
Add a button onto your form and call it btnReset
and change the display text to Reset. You can
change the style and size if you wish:

Me.Height = 191
Me.Width = 577
Me.BackColor = Color.LightGray

The size of our form will differ from yours, so
click on your form in Design view and have a look
down the Property menu for Size. You’ll see two
numbers separated by a comma. This is the width
and height in pixels; use those numbers in the code
not ours for MeWidth and Me.Height.

Most visible toolbox controls such as buttons,
textboxes and labels have a visibility property
that we can change in the code as a Boolean value.
Create two new buttons called btnVisible and
btnInvisible, give their button text an appropriate
name, then position them by your Reset button, as
this will hide or show this button. The code for the
invisible button will be:

btnReset.Visible = False

The code of the visible button will be the same;
just reverse the Boolean value:

btnReset.Visible = True

Our counter, when clicked,
will increase a number in a
label box, and another button
to decrease the number.

Adding a counter
The last feature to add to our control panel is
a counter, which when clicked will increase a
number in a label box, and another button to
decrease the number. For this, we’re going to need
three controls. Place two buttons on the form
called btnCountUp and btnCountDown, and for
the display text insert a + for one and a - for the
other. Don’t forget fonts and sizes can be found in
the Property menu under Font. In between the two
numbers, have a label box called IblCounter and set
the display text to o.

The code for our btnCountUp button is:

IblCounter.Text = IblCounter.Text + 1
The code for our btnCountDown button is:
1blCounter.Text = lblCounter.Text - 1

Give your program a test to see if all buttons
on the page work as you want them to, either by
pressing Fs or clicking the Run button at the top of
the page. Save your program so you can see how
you've written the code, in case you want to revisit
it in the future to expand some new ideas.

Final code

Public Class frmControls

Private Sub btnRed Click(ByVal sender
As System.Object, ByVal e As System.
EventArgs) Handles btnRed.Click
Me.BackColor = Color.Red ‘Changes
the form back colour to RED
End Sub

Private Sub btnHeight Click (ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles btnHeightmax.
Click

Me.Height += +10 ‘Changes the
form size by +10 pixels in height
End Sub

Private Sub btnHeightmin Click (ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles btnHeightmin.
Click

Me.Height = Me.Height - 10
‘Changes the form size by -10 pixels in
height

End Sub

Private Sub btnWidthMax Click (ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles btnWidthMax.
Click

Me.Width = Me.Width + 10 ‘Changes
the form size by +10 pixels in width

End Sub

Private Sub btnWidthmin Click (ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles btnWidthmin.
Click

Me.Width = Me.Width - 10 ‘Changes
the form size by -10 pixels in width

End Sub

Private Sub btnBlue Click (ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles btnBlue.Click

Me.BackColor = Color.Blue
‘Changes the form background colour to
blue

End Sub

Private Sub btnOrange Click (ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles btnOrange.Click

Me.BackColor = Color.Orange
‘Changes the form background colour to
Orange

End Sub

Private Sub btnYellow Click (ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles btnYellow.Click

Me.BackColor = Color.Yellow
‘Changes the form background colour to
Yellow

Boolean: A type of data that can only exist in one state -
True — or another — False.

End Sub

Private Sub btnGreen Click (ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles btnGreen.Click

Me.BackColor = Color.Green
‘Changes the form background colour to
Green

End Sub

Private Sub btnPink Click (ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles btnPink.Click

Me.BackColor = Color.HotPink
‘Changes the form background colour to
Pink

End Sub

Private Sub btnReset Click(ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles btnReset.Click

Me.Height = 191 ‘Sets the height
back to 191 pixels

Me.Width = 577 ‘sets the width
back to 577 pixels

Me.BackColor = Color.LightGray
‘Sets the colour back to the original
grey

lblCounter.Text = 0 ‘Resets the
counter back to 0

End Sub

Private Sub btnVisible Click (ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles btnVisible.

Give your program a test to
see if all buttons on the page
work as you want them to.

Click
btnReset .Visible = True ‘Makes
the Reset button visible
End Sub

Private Sub Buttonl Click(ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles Buttonl.Click

btnReset.Visible = False ‘Makes
the Reset button invisible

End Sub

Private Sub btnCountUp Click (ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles btnCountUp.
Click

1blCounter.Text = lblCounter.Text
+ 1 ‘Increases the lblCounter number by 1
End Sub

Private Sub btnCountDown Click (ByVal
sender As System.Object, ByVal e As
System.

EventArgs) Handles btnCountDown.Click
lblCounter.Text = lblCounter.Text
- 1 ‘Decreases the 1lblCounter number by 1

End Sub

End Class

Can you add a line of code to btnReset so that the text
of IblCounter is set back to 0?

Build your first
Basic game

Now you've got a feel for Visual Basic, it's time to have some fun building
our first simple game — a version of the original blockbuster Breakout

How to use
PictureBoxes
to create
elements for a
game

How to move
objects
around the
screen

How to detect
when objects
collide

How to use
private
variables

How to use
subroutines
to make your
programs
more efficient

Change the size value in the
Property window to 1000, 760.

he first game we’re going to create in Visual

Basic is a version of the pioneering arcade

favourite, Breakout. The player controls

a bat that has to deflect a ball around the
arena, hitting all the blocks without letting the ball
slip behind them. Points are scored for each block
you hit, and you need to hit all the blocks to clear
the level; if you hit the floor too many times, the
game will end. It’s one of the oldest and simplest
arcade games, and one developers still come back
to for inspiration today. Putting it together is
reasonably straightforward.

Create a new Window Forms Applications
project, and give it a cool-sounding name for the
game’s title like ‘Oblong Offensive’. Our first task is
to resize the form so that we have a bigger arena to

bounce the ball. So with the form selected, change
the size value in the Property window to 1000, 760,
as this is the length and width in pixels.

While we have the Property window open,
change the Name value to the title of the form
name to ‘Oblong Offensive’ in the Name field.

Adding walls

We now need to add walls to each side of the arena
so the ball can bounce off each one. For each wall,
we’re going to use the PictureBox control from
the toolbox, which is great for inserting images or
filling them with colours. Drag a PictureBox onto
the form and resize it to the length of the form,
then place it at the top of the screen. Change the
name of the PictureBox to pctWallTop, then the
colour using both the Name and Backcolor values
in the Property window.

Now create another PictureBox, rename it
pctWallBottom, give it a colour, then position
it at the bottom of the page. Next, create a third
PictureBox, rename it pctWallLeft, give it a colour
and position it on the left of the page. Finally, create
a fourth PictureBox, rename it pctWallRight, give it
a colour and position it at the right of the page.

We now need to add the ball. Again, this is going
to be a PictureBox called pctBall, but this time
change the size to equal width and height (18, 18)
by changing the Size property.

Getting the ball moving

It’s time to get our ball moving around the screen
and bouncing off each of the four walls, so we’ll
need a Timer control from the toolbox. Drag one
from the toolbox onto our form (this will appear
underneath) and rename it tmrMovement. We're
also going to set the interval value in the property
window to 25. Double-clicking the tmrMovement

This handy table shows how we need to set the variables if we want to move the ball's
vertical and horizontal pixel location, so that it goes where we want it to on screen. If you
want to test if the direction is working, you can manually change isBallRight and isBallUp
to either true or false in the code below. Just watch out: it won't bounce yet!

Top left
+ Vertical & - Horizontal

Top Right
+ Vertical & + Horizontal

Ball
(pctBall)

Bottom Left
- Vertical & - Horizontal

Bottom right
- Vertical & + Horizontal

icon under the form will take us through to the
Code view.

We’re going to need some variables to set
both the horizontal and vertical speed of our ball

For each wall, we're going to use the PictureBox control from the toolbox.

To add the ball, create a PictureBox called pctBall.

For each wall,
we're going to use
the PictureBox control
from the toolbox

(pctBall), as well as variables for which direction
it will be moving in. Just above the tmrMovement
subroutine that we’ve created, and underneath
the name of our Class, we can insert our global
variables that all subroutines can access. Enter the
following variables:

Dim isBallRight As Boolean = True

Dim isBallUp As Boolean = False

Dim ballSpeedVertical As Integer = 3
Dim ballSpeedHorizontal As Integer = 3

To check what direction our ball is moving in,
we’re going to have two Boolean variables called
isBallRight and isBallUp. As you might remember,
a Boolean can have only two states: either true or
false. The variable isBallRight = True will flag that
the ball should be going right. If it’s false, we can
assume the opposite, to indicate the ball should
be travelling left. The same is true of the isBallUp
variable, because if it equals true it will signify
an upward movement, and a false value will be
the opposite downwards movement. The last two
variables are going to regulate the speed of our ball
(pctBall) on both the horizontal and vertical plane.

Visual Basic can move objects around in the
window by increasing or decreasing their position
by pixels. Because the ball is in a Timer control, it
will keep moving. If you look at a flight of stairs in
a house from a side angle, the shape of it will go
slightly across then up, then across and up, then
across and up, etc. This is exactly how our ball
shape will move, changing the horizontal pixels
followed by the vertical pixels. Since this happens
so fast, it will appear that the ball is moving
smoothly in all four diagonal directions.

We now need to get our ball moving by
assigning each possible combination of our
Boolean value variables to the corresponding
horizontal and vertical speed in the tmrMovement
subroutine:

If isBallRight = True Then pctBall.Left

We’re using variables to
set both the horizontal and
vertical speed of our ball.

+

ballSpeedHorizontal Else pctBall.Left
ballSpeedHorizontal

If isBallUp = True Then pctBall.Top -=
ballSpeedVertical Else pctBall.Top +=
ballSpeedvVertical

We use the .Left and .Top property of the
PictureBox to give us the horizontal and
vertical plane.

Making the ball bounce

To make our ball bounce around the arena,
we’re going to create an If statement for left
and right, and one for top and bottom. These
can go under the last piece of code in the
tmrMovement subroutine:

If pctBall.Bounds.
IntersectsWith (pctWallBottom.Bounds) Then
isBallUp = True
ElseIf pctBall.Bounds.
IntersectsWith (pctWallTop.Bounds) Then
isBallUp = False
End If

If pctBall.Bounds.
IntersectsWith (pctWallLeft.Bounds) Then
isBallRight = True
ElseIf pctBall.Bounds.
IntersectsWith (pctWallRight.Bounds) Then

isBallRight = False
End If

Every Picture object has a boundary area, which
we use to check collision with another boundary
using bounds.IntersectsWith(). When we use this
in an If statement, as above, we can check if any
collision has occurred. Now test your code and see
if the ball bounces off each wall.

Controlling the paddle

Now we have the ball bouncing, we need to create
the paddle for the player to control, then assign it
to the computer mouse for side-to-side movement.
The paddle sprite is going to be another PictureBox
control. Drag one from the toolbox onto the

form, resize it to 100, 25 in the Size property and

pctPaddle.Left = e.x - (pctPaddle.
width / 2)

The MouseMove subroutine comes with a variable called
‘e’ that you can use. All you need to do is map it to the
horizontal x plane (left and right). Since we're using the
left side of the paddle to match it to, we need to divide
the width of the paddle by two, so that it matches to the
centre of the paddle, not the far left.

give it the name pctPaddle. Feel free to pick the
colour by changing the BackColor value. Place
the paddle at the bottom of the screen, just above
pctWallBottom.

We now need to add the code that maps the
mouse’s horizontal movement (x) to the paddle.
To get back to the Code view, click View on the
top bar and select Code, or double-click the
tmrMovement timer. There’s a preset subroutine
we can call for mouse movement events called
MouseMove. To get to this, click on the dropdown
box at the top of the Code view and select
OblongOffensive Events, then in the dropdown
box to the left of that select MouseMove. This
will add all the necessary subroutines, start and
end code. Add the following line of code with the
MouseMove subroutine:

pctPaddle.Left = e.X - (pctPaddle.Width /
2)

Test the program and see if the mouse moves
the pctPaddle left and right.

We now need to code the paddle so that the ball
bounces off it when they collide together. To give
the game an element of skill, we’re also going to
detect which side of the paddle has been hit and
send the ball back in the opposite direction. For
this, we’re going to create our own subroutines,
which are easy to code with the following syntax:

Private Sub NameofSub ()

End Sub

The paddle sprite is
another PictureBox control.

Start with the keywords Private Sub, then give it
a name of your choice. Always make it descriptive;
the bracket after the name of your subroutine is
an opportunity to pass data and variables into it
if needed. To tell the complier we’re finishing the
subroutine, we use the keywords End Sub.

The subroutine we’re going to create will check
if the ball has touched the paddle and, depending
on which half of the paddle it has touched, it will
bounce off in the opposite direction. We’re going
to call the subroutine checkPaddleBounce. Add
the following code underneath the End Sub of
tmrMovement, but before End Class:

Private Sub checkPaddleBounce ()

Dim leftOffset As Integer

Private Sub checkBounce (ByVal collider
As PictureBox)

The big difference between this subroutine and the

one for the paddle is that this subroutine has one of
the PictureBox blocks pasted into it, which we rename
‘collider’. We're being very efficient with our code here,
as we could have created the code for each of the eight
individual PictureBox blocks. Instead, we've created the
collision code once and passed each block into it. This is
why subroutines are awesome!

Add the code that maps the
mouse’s horizontal movement
(x) to the paddle.

If pctPaddle.Bounds.
IntersectsWith (pctBall.Bounds) Then
isBallUp = True

leftOffset = pctPaddle.Left -
pctBall.Left

If leftOffset < - (pctPaddle.Width / 2)
Then
isBallRight = True

Else
isBallRight = False
End If
ballSpeedHorizontal = (Rnd()
* 6) + 1
End If
End Sub

As we saw earlier, collision detection in Visual
Basic uses the bounds.Intersectswith() function,
which basically means the boundary of the shape
touched another shape. So, pctPaddle.Bounds.
IntersectsWith(pctBall.Bounds) is our conditional
check if the paddle has touched the ball. If it
has, we set isBallUp to true, which moves the ball
back up.

To give the game increased user interaction,
we need to check where on the paddle the ball has
hit, so we can deflect it left or right. As there’s no
preset function in Visual Basic, to do this we’re
going to use a variable called leftOffset, which is
the left value of the paddle minus the left value of
the ball. We then use an If statement to check if
that number is less than or greater than half the
width of the paddle. We use our Boolean variable
isBallRight to change the horizontal direction of
the ball, by changing it to either true or false.

Our last piece of code for checkPaddleBounce()
will be to randomise the speed of the deflection off
the bat by giving our ballSpeedHorizontal variable
a number between 1 and 7:

ballSpeedHorizontal = (Rnd() * 6) + 1

Now that we’ve created our subroutine, we’ll
need to call it from within the tmrMovement code
by typing the name of it with brackets. Add the
following code at the end of tmrMovement:

checkPaddleBounce ()
Test your game now to see whether the paddle

Testing your game
is very important to
make sure everything
works as intended

deflects the ball left or right.

Making blocks

We need some blocks to hit in our arena, and
we’re going to use the PictureBox control from the
toolbox to make each block. Create eight 50 x 50
PictureBoxes and colour each one. We don’t have
to rename the PictureBoxes, as Visual Basic will
name them sequentially for us, and we’ll refer to
them only once in the code.

Just like the paddle, we’re going to create a
subroutine called checkBounce, to check if the
block has been hit. Depending where the ball hits,
we need to deflect the ball in the correct direction
from all four sides. Create the following subroutine:

Private Sub checkBounce (ByVal
collider As PictureBox)

Dim topOffset As Integer
Dim leftOffset As Integer

If collider.Bounds.
IntersectsWith (pctBall.Bounds) Then
topOffset = collider.Top -
pctBall.Top
leftOffset = collider.Left -
pctBall.Left

If topOffset > 0 And
topOffset
> leftOffset Then
isBallUp = True
ElseIf topOffset < 0 And
topOffset < leftOffset Then
isBallUp = False
End If

If leftOffset < 0 And
leftOffset < topOffset Then
isBallRight = True

Else
isBallRight = False
End If
collider.Left = -100
End If

End Sub

As we have to detect collision on the top, sides
and bottom of each block, we’re going to have two
variables - leftOffset and topOffset - and use them
in the same way as we did with the paddle, to
check whether it needs to travel up or down, and
left or right.

The only issue we have is that if the block has
been hit, we need to make it disappear completely
from the arena, so we set the x position of the
PictureBox block (collider) to -100, which sends it
far left out of the arena.

We now need to call our subroutine in
tmrMovement next to where we called the
checkPaddleBounce(), but this time we pass
in each PictureBox. Add the following code to
tmrMovement just above checkPaddleBounce():

checkBounce (PictureBox1)
checkBounce (PictureBox2)
checkBounce (PictureBox3)
checkBounce (PictureBox4)
checkBounce (PictureBox5)
checkBounce (PictureBoxé6)
checkBounce (PictureBox7)

Use the PictureBox control
to make each block.

checkBounce (PictureBox8)

Test your game to see if the blocks detect the
ball, bounce in the correct direction and vanish
when hit.

Creating a scoring system
To make this a proper game, we need a score that
increases for every block hit and a set of lives,
which will decrease every time the ball hits the
bottom of the screen under the paddle. Also, we
could give our game a cool title at the top, so
players know the name of your amazing software!
We’re going to need three label boxes from the
toolbox, which will be our title, lives and score.
Drag the first label onto the form from the toolbox
and rename it IblLives, then change the text of the
label to read ‘Lives: 3. Create a variable for our
lives in our global variables section of the code (at
the top) and give it the value of 3:

Dim lives As Integer = 3

To get the lives to count down, we need to
add the following to the current If statement
that checks if the ball has hit the bottom, in
tmrMovement:

If pctBall.Bounds.
IntersectsWith (pctWallBottom.Bounds) Then
isBallUp = True
lives -= 1
1blLives.Text = “Lives: “ &
lives

We need three label boxes
from the toolbox for our title,
lives and score.

If lives = 0 Then
tmrMovement . Enabled =
False
MsgBox (“Game Over”)
Me.Close ()
End If

We’ve had to put in another If statement to
check when the lives equal o. This then needs to
stop the timer, display a ‘Game Over’ message box,
and close the program.

To create a scoring system, we’re going to use
a new label from the toolbox and call it IblScore.
Replace the default label text with ‘Score:0’. Next,
create a new variable at the top with our other
global variables:

Dim score As Integer = 0

Add the following code to the checkBounce
subroutine at the end, so that each block hit will
increase the score variable by 10 and display the
new score in IblScore.Text:

collider.Left = -100
score += 10
1blScore.Text = “Score: “ &

score

End If

The last task with the score is to create an If
statement that checks if the maximum score of 8o
has been achieved, effectively clearing all blocks,
stopping the timer, displaying a congratulations
message, then quitting the program. Add the
following code at the end of tmrMovement:

If score = 80 Then
tmrMovement .Enabled = False
MsgBox (“Congratulations! You
have cleared the level”)
Me.Close ()
End If

The last label box to add will just be the name of
the game in the top-centre position. With all three
boxes, feel free to change the fonts, background
and size to match the style of your game.

Now test and play your game to see if
everything works!

Give your game d
cool title so players
know the name of your
amazing softwarel

Adding keyboard controls

The user’s reflex with the mouse might make the
game too easy, so if you want to add an extra layer
of difficulty, we could change the control method
of the paddle from the mouse to the keyboard. The
first job is to disable the mouse control in the code,
using the comment key (‘) in front of that line of
code, so the complier ignores it:

Private Sub Forml MouseMove (sender As
Object, e As MouseEventArgs) Handles
Me .MouseMove
‘pctPaddle.Left = e.X -
(pctPaddle.Width / 2)
End Sub

If done correctly, the line should turn green,
and we know that this line is temporarily removed
from the game without having to delete what we’ve
done. This also means we can switch back, should
you want to re-enable the mouse, by taking out the
comment symbol () at the start of the line. This
can be a useful trick when you’re experimenting
with an app or game.

We now need to code the paddle movement
to use the keyboard. We do this using a method

Depending on how difficult you want to make the
game, you could try changing the numbers from 20 to
a smaller value, which means it will take longer to move
the paddle to the right position to deflect the ball. If you
really want to throw the player, you could have different
values for the left and right movement, so it takes time
to adapt to the game!

You can mdap
almost any key
from the keyboard
to your controls

very similar to the one we used for the mouse
movement subroutine. Go into your code and
select the Form events from the top dropdown
menu, and this time select KeyDown from the right
dropdown box.

This creates the subroutine code needed for
Keyboard events. Add the following code to the
subroutine, which will map the left and right arrow
to the movement of the paddle:

If e.KeyValue = Keys.Left Then
pctPaddle.Left -= 20
End If

If e.KeyValue = Keys.Right Then
pctPaddle.Left += 20
End If

With each If statement, we’re binding the
left and right arrow keys from the keyboard to
increase the left-side position of the paddle by
20 or reduce the left-side position by 20. You can
map almost any key from the keyboard to your

Coding the paddle
movement to use the
keyboard.

controls by changing Keys.Left to something like
Keys.A. Alternatively, you can just type Keys.
and Intellisense will give you a full list of keys to
choose from.

If you want to move back to mouse control, you
can comment out the code we’ve just entered -
with the comment key (‘) on each line of both If
statements - then uncomment the mouse control
code. This method is really effective for testing
parts of your code with new ideas, while not
deleting anything you’ve previously coded.

Expanding the game
There are several ways you can expand the game to
make it more challenging for the player:

Change the speed of the ball (pctBall) for each
block you’ve hit

Shorten the width of the paddle (pctPaddle)
every time your score increases

Create more blocks of various sizes

Change the form size and the position of
the blocks

Create ‘power up’ blocks that when collected
could change the speed of the ball, alter the
length of the paddle, increase the score or
randomly choose one of the previous options.

Randomise the Y coordinate position of the ball
in form_load; this is code that runs when the
form is loaded. You can access this by double-

Map the left and right
arrow to the movement of
the paddle.

clicking the background of your form: pctBall.
Top = (200 * Rnd()) + 30

Randomise the Y coordinate position of the
blocks in form_load: pctBall.Top = (200 * Rnd())
+ 30

Final code
Public Class Forml
Dim isBallRight As Boolean = False
Dim isBallUp As Boolean = True
Dim ballSpeedVertical As Integer = 3

Dim ballSpeedHorizontal As Integer =

Dim lives As Integer = 3
Dim score As Integer

1]
o

Private Sub tmrMovement Tick (ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles tmrMovement.
Tick

If isBallRight = True Then
pctBall.Left += ballSpeedHorizontal Else
pctBall.Left -= ballSpeedHorizontal

If isBallUp = True Then pctBall.
Top -= ballSpeedVertical Else pctBall.Top
+= ballSpeedVertical

If pctBall.Bounds.
IntersectsWith (pctWallBottom.Bounds) Then
isBallUp = True
lives -=1
1blLives.Text = “Lives: “ &
lives

The original 1976 Breakout was inspired by one of the
very first arcade hits, Atari's 1972 game, Pong. Breakout
was designed by Nolan Bushnell and Steve Bristow, but
the code was written by Steve Wozniak with help from
Steve Jobs, who would later go onto found Apple.

If lives = 0 Then
tmrMovement .Enabled =
False
MsgBox (“Game Over”)
Me.Close ()
End If
ElseIf pctBall.Bounds.
IntersectsWith (pctWallTop.Bounds) Then
isBallUp = False
End If

If pctBall.Bounds.
IntersectsWith (pctWallLeft.Bounds) Then
isBallRight = True
ElseIf pctBall.Bounds.
IntersectsWith (pctWallRight .Bounds) Then
isBallRight = False
End If

checkBounce (PictureBox1)
checkBounce (PictureBox2)
checkBounce (PictureBox3)
checkBounce (PictureBox4)
checkBounce (PictureBox5)
checkBounce (PictureBoxé6)
checkBounce (PictureBox7)
checkBounce (PictureBox8)

checkPaddleBounce ()

If score = 80 Then
tmrMovement .Enabled = False
MsgBox (“Congratulations! You
have cleared the level”)
Me.Close ()
End If

End Sub

Private Sub checkBounce (ByVal
collider As PictureBox)

Dim topOffset As Integer
Dim leftOffset As Integer

If collider.Bounds.
IntersectsWith (pctBall.Bounds) Then

There are several
wdays you can expand
the game to make it
more challenging

topOffset = collider.Top -
pctBall.Top

leftOffset = collider.Left -
pctBall.Left

If topOffset > 0 And topOffset
> leftOffset Then
isBallUp = True
ElseIf topOffset < 0 And
topOffset < leftOffset Then
isBallUp = False
End If
If leftOffset < 0 And
leftOffset < topOffset Then
isBallRight = True

Else
isBallRight = False
End If
collider.Left = -100
score += 10
1lblScore.Text = “Score: “ &
score
End If
End Sub

Private Sub checkPaddleBounce ()

Dim topOffset As Integer
Dim leftOffset As Integer

Test and play your game to
see if everything works!

If pctPaddle.Bounds.
IntersectsWith (pctBall.Bounds) Then

topOffset = pctPaddle.Top -
pctBall.Top

leftOffset = pctPaddle.Left -
pctBall.Left

If topOffset > 0 And topOffset
> leftOffset Then
isBallUp = True
ElseIf topOffset < 0 Then
isBallUp = False
End If
If leftOffset < - (pctPaddle.

Width / 2) And leftOffset < topOffset Then
isBallRight = True

Else
isBallRight = False
End If
ballSpeedHorizontal = (Rnd()
* 6) + 1
End If
End Sub

Private Sub OblongOffensive
MouseMove (sender As Object, e As
MouseEventArgs) Handles Me.MouseMove

pctbPaddle.Left = e. X -
(pctPaddle.Width / 2)

End Sub

End Class

Build a Visuadl
Basic app

Now you're getting to grips with Visual Basic, we can start to code more
complex and exciting apps, such as this image viewer with built-in slideshow

How to use
variables

How to display
Images

How to use
the timer

How to restyle
the user
interface

How to add
password
protection to
an app

opefully you're now ready to try

something a little more complicated. To

start with, we’re going to create an image

slideshow application that will use the
PictureBox control, Timer control, and the Project
Resource folder. This little app will import images
from a computer and display them as a slideshow
in a random order on a continuous loop.

Create a new project and select Windows
Forms Application. Our form needs three basic
components from the toolbox - PictureBox, Button
and Timer. All of these controls can be found in the

Our form needs three
basic components from
the toolbox — PictureBox,
Button and Timer.

Change the button text
to Start.

Toolbox menu on the left-hand side of the screen.
When you’ve selected one, you can draw the
control on the form so you have full control over
the size, layout and position of each component.

You can also change the name of the form by
selecting it with a left mouse click, then choosing
Text from the Properties window on the lower
right-hand of the IDE. By default, it’s named Formi:
change it to something like frmPictureViewer. The
only toolbox control we’re going to rename is our
button, which we can give the name btnStart, then
change the button text to Start.

Unlike SmallBASIC, VB needs to have a data type declared with the variable so the
computer knows what type to expect, and can allocate the correct amount of memory.
There are many different data types, but here are some of the most frequently used:

Integer Whole numbers
Single Decimal numbers
String Words (Text)
Boolean True or False

You can drag the Timer icon on the form, but
you won'’t see anything get added. Only the name
Timer1 will appear underneath the form, with a
Stopwatch icon, to show a timer has been added.
The Timer control can repeat code at set time
intervals, which will be useful when we want to
display images for a certain amount of time.

The interval value for the Timer control is
measured in milliseconds, so every 1,000 ticks are
equal to one second.

We also need to add images to our Resources
folder, so that we have a bank of them ready to
be added into the random sequence. Above the
Properties window on the right of the screen,
you’ll see the Solution Explorer. This shows all of
the forms you’ve created so far, and you should
also find an option called My Project, which when
double-clicked will give access to all of the options
for the current application you’re making. Find
the Resources option, click ‘Add resource’ and

-32, 45, 1024
3.145
Kevin, Quirky

True, False

We need to add some
images to our Resources
folder, to be added into the
random sequence.

PictureBoxl.Image

My Project will give
access to all of the
options for the current
dpp youre making

finally select ‘Existing resource’. This gives you a
window to select the image files you'd like in your
application. To keep things simple, just choose four
images to import.

We're also going to declare a single variable for
our application, as it will store a random number in
memory that we can use to select which image will
be displayed. All variables in Visual Basic start with
Dim, then the name of the variable, and finally what
data type. In this case, it will be an Integer (a whole
number, without any decimal point):

Dim iCounter As Integer

Randomising a number is easy; you can call
the Randomize() function to assign our variable
a random number. The first number, 3, is the
maximum we want to randomise, then we multiply
that by Rnd(), which generates a random decimal
number between o and 1. We add the +1 to the end,
because if it generates o it will move to 1 instead:

Randomize ()
iCounter = (3 * Rnd()) + 1
We then want to resize any given image to the
width and height of our PictureBox control, so that

all images appear with the same dimensions:

PictureBoxl.SizeMode =
PictureBoxSizeMode.StretchImage

The timer now needs to be set, so it knows

My .Resources.ID 1001516

The line of code used to add images to the Picture window is simple: we first refer to the
PictureBox by its name and property, picturebox1.image, then give it the location of the
image file that we've uploaded to the Resources folder. In this example, our image was
called ID_1001516. We never use the image file extension .jpg or .png; this would confuse
Visual Basic, as most code uses a full stop to access further functions and properties.

how long to display each image until the next
random picture. The interval number value is in
milliseconds. Our timer has 3000, so it will display GUI: Graphical User Interface. The layout, size and
for three seconds: appearance of your application, and all the buttons,
icons, menus and sliders you use to control it.
Timerl.Interval = 3000

Everything is now ready, so we can add the code Tick
that will use our random number, and assign it to a
particular picture with a basic If statement: Dim iCounter As Integer
Randomize ()
If iCounter = 1 Then iCounter = (3 * Rnd()) + 1
PictureBoxl.Image = PictureBoxl.SizeMode =
My.Resources.ID 1001516 PictureBoxSizeMode.StretchImage
ElseIf iCounter = 2 Then Timerl.Interval = 3000
PictureBoxl.Image =
My .Resources.ID 100221425 If iCounter = 1 Then
ElseIf iCounter = 3 Then PictureBoxl.Image =
PictureBoxl.Image = My .Resources.ID 1001516
My .Resources.ID 10022176 ElseIf iCounter = 2 Then
Else PictureBoxl.Image =
PictureBoxl.Image = My .Resources.ID 100221425
My .Resources.ID 10029497 ElseIf iCounter = 3 Then
End If PictureBoxl.Image =
My.Resources.ID 10022176
This is all the code we’ll need inside the Timer1 Else
control. Our final step will be to add code to the PictureBoxl.Image =
Start button (btnStart), which will activate the My .Resources.ID 10029497
timer. Double-click the Start button and add the End If
following code inside it. This will set the Timer End Sub
Interval to a quicker value; otherwise, we’d have to
wait three seconds for the first image to appear. To Private Sub BtnStart Click(sender As
activate the timer and effectively start the program, Object, e As EventArgs) Handles BtnStart.
we set the Enabled property to true: Click

Timerl.Interval = 10
Timerl.Interval = 10

Timerl.Enabled = True

Run the program with the Start play button on
the top bar, or press Fs, when you have all the code
in the correct place:

Public Class Forml

Private Sub Timerl Tick (sender As
Object, e As EventArgs) Handles Timerl.

Try adding more pictures to the Resource folder, then
change the code to accommodate the new images. For
each new image, you'll have to increase the random
number generated, currently (3 * Rnd()) + 1, then add to
the PictureBox If statement using Elseif. The last image
added will just be Else not Elseif.
Our program randomly displays one of four images.

Timerl.Enabled = True
End Sub
End Class

Our finished program will now display one of
the four images in a random order every three
seconds. We can change the speed of the rotation
by altering the value of Timer1.Interval; the higher
the number, the longer it will stay on each image
before moving to the next.

Just remember that our pictures used filenames
like ID_1001516. Yours will be different, so make
sure you use the same names when you’re coding
the PictureBoxi1.image section as the names inside
your Resources folder. Intellisense is useful here,
and can help you get the job done faster.

Changing styles

We now have a good working prototype, but we
can give it some style and functionality. Let’s first
work on the GUI of our application.

Visual Basic always defaults to a drab grey
colour, so to change our background we need to
select the form with a left mouse click and find
BackColor from the Properties menu (on the

If you want to change the speed of the fade-in effect,
try changing the value in Me.Opacity += 0.01 to more
decimal places e.g. 0.001.

Add some style and
functionality to your app

Change the speed
of the rotation by
altering the value of
the Timerl.Interval

bottom right) and change this to black. Next, we’re
going to change the window appearance to give it a
sleeker look with no icon or minimise buttons. Find
FormBorderStyle in the Properties menu and select
FixedToolWindowi. This means we can move the
image viewer around the screen, but the user can’t
resize the window with the mouse.

Our Start button now looks out of place, with
the cool new look we’re giving our image viewer
program, so let’s change its appearance. Make the
following changes from the Properties window:
change FlatStyle to ‘popup’, and BackColor to a
dark grey. To change the font colour of the button,
you need to choose a colour from ForeColor.

The last change to our form is a caption
underneath each picture. To do this, we’ll need
a label box from the toolbox. Position this
underneath the photo, and change the colour and
font to suit your theme. By default, we can add the
phrase “Ready to start slide show...” by editing the
Text property of the label. To set the caption when
each image is loaded, we’re going to edit the If
statement in Timer1 with the highlighted code, but
the message can be changed to suit your images:

If iCounter = 1 Then
PictureBoxl.Image =
My .Resources.ID 1001516
Caption.Text = “A beautiful
image”
ElseIf iCounter = 2 Then
PictureBoxl.Image = My.Resources.
ID 100221425
Caption.Text = “ I love the
colours here "
ElseIf iCounter = 3 Then
PictureBoxl.Image =
My.Resources.ID 10022176
Caption.Text = “I wish I was
back there now!”
Else
PictureBoxl.Image = My.Resources.
ID 10029497
Caption.Text = “Simply
stunning”
End If

Our toolbar’s buttons can
manually change the speed of
the image transitions.

Visual Basic doesn’t give us much in the way
of applying effects to our pictures, but we do have
an Opacity property with our form that can give a
fade-in effect. To use this, we need to add another
Timer control and use a Do While loop to check
the opacity value, before gradually increasing it
until it gets to 1, which is fully visible. Add a new
timer (Timer2) from the toolbox and add the
following code:

Timer2.Interval = 30
Do While Me.Opacity < 1
Me.Opacity += 0.01
Loop

Every time we load a new random picture, we’ll
need to reset the opacity down to a nearly invisible
value, then our Do While loop in Timerz will kick
in and slowly return the value back to completely
visible (1). Add the following code to the Timer1
PictureBox If statement:

If iCounter = 1 Then

Me.Opacity = 0.001

PictureBoxl.Image =
My .Resources.ID 1001516
Caption.Text = “A beautiful image”

ElseIf iCounter = 2 Then

Me.Opacity = 0.001

PictureBoxl.Image =

My .Resources.ID 100221425
Caption.Text = “I love the colours here”
ElseIf iCounter = 3 Then
Me.Opacity = 0.001
PictureBoxl.Image =
My .Resources.ID 10022176
Caption.Text = “Wish I was back there
now!”
Else
Me.Opacity = 0.001
PictureBoxl.Image =
My .Resources.ID 10029497
Caption.Text = “Simply stunning”
End If
End Sub

We’ll also need to edit our Start button
(btnStart), so that we now start to enable both
timers. Add the following to the existing code:

Timer2.Enabled = True

Making a toolbar

For our next change, we’re going to create a custom
toolbar with buttons that can manually change

the speed of the image transitions to be faster or
slower than our default value. We’ll also add

Pause and Quit buttons. All of our buttons will
have the same style as our Start button, but we

can alternate our grey colours to make things

more interesting.

Our Pause button will effectively stop both
timers, so any picture currently onscreen will stay
there until the Start button is pressed again. Add
the following code by double-clicking on the Pause
button on the form:

Timerl.Enabled = False
Timer2.Enabled = False

The Quit button will close our app. Double-click
the Quit button and add the following line of code:

Close ()

The Speedup button (>>) will shorten the
Timertinterval value by 500 milliseconds (half a
second), but as we’ve mentioned before we can’t
go below o or we’ll get a critical error and our
app will crash. To prevent this, we’re going to put
an If statement to check if the interval value has
dropped below 1000 and, if it has, we’ll hide
the button, so the user can’t click it anymore.
Double-click the Slowdown button (<<) and add the
following code:

Timerl.Interval = Timerl.Interval - 500

Our Slowdown
button will increase
the interval value of
the Timerl by 500

If Timerl.Interval < 1000 Then
btnSpeedUp.Visible = False
End If

Our Slowdown button will increase the interval
value of the Timer1 by soo milliseconds. We’ll also
need a short If statement that brings back
the visibility of the Speedup button if it’s
been hidden by the other speed control button.
Double-click the Slowdown button and add
this code:

Timerl.Interval = Timerl.Interval + 500
If Timerl.Interval > 1000 Then
btnSpeedUp.Visible = True
End If

Final code
Public Class frmPictureViewer

Private Sub Buttonl Click (ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles btnStart.Click

Timerl.Interval = 3000

Timerl.Enabled = True

Timer2.Enabled = True

Caption.Text = “Getting ready to
start....”

End Sub

Private Sub Timerl Tick (ByVal sender

As System.Object, ByVal e As System.
EventArgs) Handles Timerl.Tick

Dim iCounter As Integer

Randomize ()

iCounter = (4 * Rnd()) + 1

PictureBoxl.SizeMode =
PictureBoxSizeMode.StretchImage

If iCounter = 1 Then
Me.Opacity = 0.001
PictureBoxl.Image =
My .Resources.ID 1001516
Caption.Text = “A beautiful image”

Under the Application
menu, you'll find a Startup
form option, where you can
select any form you’ve made
so far.

ElseIf iCounter = 2 Then
Me.Opacity = 0.001
PictureBoxl.Image =
My .Resources.ID 100221425
Caption.Text = “I love the colours here”
ElseIf iCounter = 3 Then
Me.Opacity = 0.001
PictureBoxl.Image =
My .Resources.ID 10022176
Caption.Text = “Wish I was back there
now!”
Else
Me.Opacity = 0.001
PictureBoxl.Image
My .Resources.ID 10029497
Caption.Text = “Simply stunning”
End If
End Sub

End Sub

Private Sub Timer2 Tick (ByVal sender
As System.Object, ByVal e As System.
EventArgs) Handles Timer2.Tick
Timer2.Interval = 30
Do While Me.Opacity < 1
Me.Opacity += 0.01
Loop
End Sub

Private Sub btnQuit Click (ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles btnQuit.Click

Close()

End Sub

To complete our image
viewer, we've added a
password screen.

Private Sub btnPause Click (ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles btnPause.Click

Timerl.Enabled = False
Timer2.Enabled = False
End Sub

Private Sub btnSlowDown Click (ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles btnSlowDown.
Click

Timerl.Interval = Timerl.Interval
+ 500
If Timerl.Interval > 1000 Then
btnSpeedUp.Visible = True
End If
End Sub

Private Sub btnSpeedUp Click (ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles btnSpeedUp.
Click

Timerl.Interval = Timerl.Interval
- 500
If Timerl.Interval < 1000 Then
btnSpeedUp.Visible = False

End If
End Sub

End Class

Adding security
To complete our image viewer, we’re going to add
a security feature that will stop any unwanted
users from accessing our slideshow. We’ll need to
add another form, which you can access under the
Project menu, selecting Add Windows Form. We’ll
call this form frmPassword.

On our password form, we’re going to add
a label for a title, which can say Image Viewer
Password, by changing the Text property. We’ll also
need a textbox, call it txtPassword, so the user can
type in the password and a button (btnCheck) to
check if the password is correct. You can apply all
the style changes we’ve done for frmImageViewer,
such as colour, fonts and form style, to give it the
feel that it all belongs in one application.

We'll set the password in the code using
an If statement. If the user enters the correct
password, we’re going to hide the visibility of our
password form, then enable the visibility of our
frmPictureViewer. If the user enters anything but

Why not make
your own logo that
represents you or your
software studio?

Give your application or
game its own icon for a more
professional finish.

the password, we’ll use a neat pop-up box
function called MsgBox that can display a
message in a pop-up screen with a single OK
button, to cancel the message and return back to the
password screen.

When you’ve created and edited the button,
double-click it and add the following code:

If txtPassword.Text = “letmein” Then
Me.Visible = False
frmPictureViewer.Visible =

True

Else
MsgBox (“Unauthorised!”)
End If

In this example, we’ve used the password
‘letmein’, but feel free to change it to something
more personal and certainly more secure!

It’s no good having a password box if anyone can
see what you're typing onscreen, so we’re going to
stealth our text behind a symbol. Simply select our
textbox and find the property value PasswordChar
on the right-hand side of the screen. Enter an
asterix symbol (*) in the field, and this will instruct
the computer to display that symbol whenever the
user types on the keyboard.

As we’ve made this form last, the program
won’t be the first form we see, as Visual Basic will
always default to the first form created - in this
case, the form with our slideshow. To change the
order, we need to go back to My Project in the
Solutions Window. Under the Application menu,
you’ll find a Startup form option, where you can
select any form you’ve made so far. Change this to
frmPassword.

Now test your program by clicking Run on the
toolbar or pressing Fs.

Making your app ready to run

We have a good working program, but don’t
really want to load Visual Studio, then run the
program each time we want to see our slideshow.
Whenever you run your code, Visual Studio
compiles it in a single executable file (EXE).
Basically, it takes the Basic code we write and

converts it into a series of instructions that your
PC or laptop can understand.

To find the executable file, go to the Project file
on your computer, and you’ll see a folder called
Bin. Inside, there’s another folder called Debug.
This will contain the single EXE file of your
complied code. You can drag this out of the folder
and onto your Windows desktop.

To run an EXE file, just double-click on it.

Your program will then appear and work its magic.
The great thing is that you now have a version

of your game or app that other people can run,
whether they have Visual Basic installed or not.
This is a great way of distributing your app

or game.

Changing an icon file

The icon for your executable file will be the
default Windows icon, but we can change that to
an exciting graphic that better represents your
application by using the Project Settings window,
where we changed the load order of the forms.
Next to this, there’s a dropdown box under the
heading Icon, where we can browse for a new
image or select one we’ve already used.

Icon files aren’t like normal image files such
as GIF, JPEG or PNG. They have their own file
type, ICO, which indicates they’re icons used on
files. You either need to download some free ICO
files for your application from the internet, or you
can convert an image you’ve already made using
an image editor that supports exporting to the
1CO format. If you need something to do the job,
we’d recommend the popular free image editor,
IrfanView. You can get this from www.irfanview.
com. Click on browse and find a new icon image.

When you’ve changed the icon for the
application, run the program again with Fs or
the Run button. Check the Debug folder, and
the new EXE file will be there, with your new
icon image ready for you to use or distribute
to others.

Giving your application or game its own icon
won’t change the way it works, but it will add a
more professional finish to the final product. You
could even make your own logo that represents
you or your software studio, which you can use
within all of your programs. It will give them
some identify and tell the world who’s made this
awesome software!

go

next?

Where do you

You might have completed the last project, but your journey into code has

only just begun. What you do next is up to you

Python is now used in
many schools and also
professionally across a whole
variety of industries.

ongratulations! If you’ve made it this far,
you're already developing a good working
knowledge of how programs work, and
you should be able to start programming
your own apps and games. The best way to learn
about programming isn’t to learn a lot of theory or
read a lot of books, although neither ever hurts. No,
the best way to learn about programming is to keep
coding. Sometimes yowll make something without
any effort, and at other times you’ll struggle and
make mistakes. By learning how to fix problems
and debug your own programs, you’ll learn even

more about programming and discover ways to
make your programs more efficient. The time and
effort you put in is never wasted.

Mastering new languages

Now that you’ve had a taste of Scratch, Small
Basic and Visual Basic, you might want to expand
your talents to different platforms and devices.
For instance, you may want to develop apps for
mobile phones or tablets, or start working on
desktop programs for MacOS X or Linux.
Choosing what device and operating system you

To get better at programming, you
need to practise, first writing simple

applications, then working your way

up to bigger programs and games.
Here are some simple ideas for
projects in Visual Basic using

the skills that you've learnt from
this book:

VISUAL CALCULATOR
Use the number buttons to enter

values into the textbox, then include

buttons for addition, subtraction,
multiplication and division. See if
you can mimic some of the popular
functions you'd find on a calculator.

The AC button should clear all boxes

and variables. If you display the
variables underneath the textbox, it
makes testing a whole lot easier.

BINARY CONVERTOR
This project takes a standard (or
denary) number and converts it into

computer-friendly binary. See if you
can work out how to do it.

VISUAL DICE

This bite-sized project creates a
random number from 1 to 6, then
displays the correct image for the
dice roll. We covered producing
random numbers earlier on. See if

you can remember where, then

put that knowledge to good use.
You can expand this to form
different types of dice, which is great
for virtual board and role-playing
games.

want to develop on will determine which language

to learn.

To develop for any Apple device, you’ll need
to learn a language called ObjectiveC. This
language is based on the C style of programming,
with some new features added by NextStep
and Apple. To start coding, you’ll need either a
MacBook or an iMac and the Xcode software,
which can be downloaded for free from the Apple
store. Using Xcode, you can develop for the Apple
desktop, mobile iOS phones and tablets. The only
issues with ObjectiveC and Xcode are that they
both have a steep learning curve, and to publish
your applications on the Apple store youll need

STOPWATCH

It might sound complex, but all this
project needs to do is use a timer to
count up or down on label boxes.
Change the speed of the timer or
set the initial time by using + and

— buttons on hours, minutes and
seconds. The Pause button should
stop the Timer, and the Reset button
should set all numbers back to 0
and the speed back to real time. You
could even use a MsgBox to make
alarms. Can you work out how to
pull this off?

TEMPERATURE CONVERTOR

This project takes a number from the
user and pastes it into one of two
functions to convert between Celsius
and Fahrenheit. The calculations

for converting are simpler than you
might think. The selection buttons

are called radio buttons and they
have a Boolean value for on and off,
which makes them easy to use with
If statements.

WEAPON GENERATOR

This fun project creates random
statistics for weapons in a video
game. Working within certain
boundaries, it can simulate the ‘loot
drops’ you find in many action
games and RPGs. Have fun with the
name by having a list of adjectives
and a list of nouns, such as animals,
and randomly putting them together.
High rolls could generate extra
elemental damage.

to be a registered Apple developer, which costs

£60 a year.

The other major mobile platform is Android,
and you can program applications using the
Android SDK (Software Development Kit).

You’ll also need an Integrated Development
Environment, or IDE, which provides you with all
the tools and software you need to write and debug
code. We’d recommend Eclipse, which is a powerful
IDE that can be used with many different types of
programming languages. The Android SDK and
Eclipse will run on most major OS platforms, and
more importantly, it can be downloaded for free at
developer.android.com/sdk/index.html.

Download the Java SDK and
you can use Eclipse as an IDE.

Coding for the web

HTML (HyperText Markup Language) is the code
used to create web pages. It’s not, strictly speaking,
a programming language, but it’s useful to know
when developing internet-dependent applications
and games. To view the HTML code of any website,
you can find the View Source option in your
browser, usually under the View menu. This will
pull up a window showing all the code at work in
your favourite websites. There are many types of
software on the market to develop HTML, but as
long as you have a text editor, such as Notepad, you
can code using that and your internet browser will
display the result.

Fancy making web games or interactive websites?
JavaScript is a client-side language - it runs in your
browser rather than on the server that powers the
website - that’s used primarily for internet browsers
and webpages. It fits nicely into HTML to give
your webpages interactivity and, just like HTML,
you don’t have to install software to get coding. If
you want to work with a more fully featured IDE,
several good ones are available for free. The syntax
for JavaScript is simple to understand and, while the
name suggests otherwise, it has nothing to do with
the Java programming language.

Java and Python

Not that there’s anything wrong with Java, one of
the most popular cross-platform programming
languages. The code can look complex, and it does
have a steep learning curve. It takes much of its
syntax style from C and C++, but if you can handle
it you can make plenty of great games and apps for
free. Simply download the Java SDK and you can
use Eclipse as an IDE. To find out more about Java,
visit docs.oracle.com/javase/tutorial/

If you want a more approachable option, try
Python. It’s now used in many schools and also
professionally across a whole variety of industries.
What seems like simple syntax quickly turns
into a powerful cross-platform language that can
create games and apps. The Python software is
free to download and will work on most operating
systems. The only confusing part is that there are
two versions; the older version 2, which people still
love and view as perfection, and the newer version
3, which attempts to modernise the language, but
by doing that changes the syntax and commands.

There are plenty of other great languages that we
don’t have space to look at here such as PHP, C#, Ruby,
PEARL, SQL and C++. Try googling them and do some
research; you might find the perfect language for you!

If you have an iPad or Android tablet, there
are some great free apps to practise coding
techniques using your device:

HOPSCOTCH (iOS) is a free app that looks and
behaves very similar to Scratch, where you have
cartoon characters and drag your code in blocks
onto the page. It's very simplistic, but really great
fun for younger coders.
www.gethopscotch.com

HAKITZU ELITE: ROBOT HACKERS (iOS and
Android) is a robot fighting game that uses
JavaScript syntax to move the robots and make
them fight. It's a free app, but there are IAPs
(in-app purchases) to disable ads and buy new
parts for your robots.
www.kuatostudios.com

CODE ACADEMY: CODE HOUR (iOS) is a
free app that guides you through the basics of
programming techniques such as data types,
variables and If statements. Don't worry Android
users, it will be coming to your
platform soon.

www.codecademy.com

CARGO-BOT (iOS) is a free puzzle
game that really forces you to think
logically and rewards the user for
efficient looping with minimal code.
The game was actually developed
on the iPad with another app called
Codea, which is a programming
environment that uses another
language, Lua.
twolivesleft.com/CargoBot/

Glossary

All those essential coding terms defined in plain English

Application: A complete program or a group
of linked programs designed to perform a
certain task or a set of tasks. While they’re
very different in what they do and how they’re
used, Adobe Photoshop, Google Chrome and
Minecraft are all applications. Applications for
smartphones or tablets are often described as

apps.

Argument: A value or a reference to a value
that’s passed to a function, so that the function
can do some work with it. If “sum” was the
function in the instruction answer = sum
(valuel, value2), then value1 and value2 would
be the arguments.

Array: A collection of values, strings or
variables that can be accessed through an index
number. When the program needs to access the
information stored in

the array, it just needs to call on the item by its
index number.

BASIC: Beginner’s All-purpose Symbolic
Instruction Code. A high-level programming
language designed with new programmers
in mind, BASIC emphasises ease of use

over performance, logical structure or
sophistication.

Boolean: A value that has only two possible
states: true or false.

C: A general-purpose, high-level programming
language used widely in every area of software
development. C is the basis for a whole

family of popular languages, including C++,
Objective-C and Cs.

Class: The initial version of an object to be
used in a program, which can then be used

to create further instances. For example, you
might define one circle as a class, then use that
class to draw further circles.

Code: The lines of text or numbers that tell the

computer what to do in a program. Code has to
be written to conform to the specific style - or
protocol - of a programming language.

Compiler: A program that takes the code
written in a programming language and turns
it into an application that other users can run
and use.

Conditional: An instruction or statement

in a program that’s only run when a certain
condition is met. For example, if the traffic light
is green when your car reaches the lights, the
car can go.

Control flow: The order in which instructions,
function calls and statements are checked or
executed as a program runs. Programmers use
loops, subroutines and conditionals to affect
how the control flow works.

Costume: In Scratch, a graphic that defines the
visual appearance of a sprite. A sprite can have
many costumes, and switch between them to
express different states or simulate animation.

CPU: Central Processing Unit. The main
processor in a computer, which runs the lion’s
share of the code in any application.

Debug: The process of checking through code,
looking for a mistake that might stop a program
running, or prevent it from running properly.

Function: A self-contained bit of code that
performs a specific task, usually taking in some
data, working with it and sending back a result.

HTML: HyperText Markup Language. The
standard markup language used to create web
pages. HTML code is processed by the browser,
which then draws out and operates the page.

Instance: A single version or realisation of an
object. The basic form of the object is defined
by its class, but the instance might vary from
this in any number of ways.

Instruction: An order given to the CPU by a
computer program.

Integer: A whole number.

Interpretor: A program that takes the code
written in a programming language and runs it
line by line as an application without compiling
it first. A program run in an interpreter won’t
be as fast as a compiled version, but has the
advantage that it can be debugged or changed
and run again without recompiling.

Java: An object-oriented, high-level
programming language designed to run
programs across as many computers as
possible. Java is a hugely popular programming
language, and used for many applications that
run on the web.

JavaScript: A scripting programming language
that shares some things in common with Java
and C, and which is most commonly used in
web pages and web-based applications.

Language: A language specifically designed
to communicate instructions to a computer.
Those instructions come in the shape of a
program, written according to the syntax of
that specific language.

Loop: A structure in a program that tells

the processor to keep repeating one or more
instructions, either forever, a specified number
of times, or until certain conditions are met.

Object-oriented: A type of programming that
focuses on objects (like a circle, a sprite or a
menu), and on the data and behaviour attached
to those objects. Object-oriented programs

are theoretically more efficient, and easier to
understand, maintain and adapt.

Operator: An object that manipulates values or
variables. For example, a + or - symbol would
be the operator in a sum.

Optimisation: The process of making a
program work more efficiently and often at a
higher speed.

Program: A series of instructions designed to
perform a task on a computer, and written in a
programming language. Programs have to be
compiled or interpreted to be run.

Python: A general-purpose, high-level
programming language that’s designed to
be highly efficient and easy to read. Python
is a very popular language, and reasonably
approachable to beginners.

Random: Something that’s made or that
happens without any pattern and can’t be
predicted.

Routine: A sequence of instructions that
performs a specific task as part of a larger
program.

Ruby: A general-purpose, high-level, object-
oriented programming language. Ruby is
designed to be efficient, easy to use and fun,
based more on the way programmers think
than the way computers operate.

Scratch: A simplified programming
environment aimed at new programmers and

especially young programmers. Scratch teaches
the basics of programming without the user
having to learn any actual code.

Script: A kind of program that tells an
application, a web browser or an operating
system what to do, line by line. Some
programming languages specialise in scripting,
and are designed to be easier to understand
and use than other languages.

SDK: Software Development Kit. A group of
programs that enable a programmer to develop
applications for a specific operating system

or device, such as a tablet, games console,
computer or smartphone.

Source code: The code for a program before
it’s compiled or interpreted.

Sprite: In Scratch, an object that appears on
the Stage and performs actions according to the
blocks of script attached to it.

Stage: In Scratch, the area of the screen in
which sprites move and operate according to
their scripts.

Statement: The smallest standalone element
of a program. Statements describe an action to
be carried out.

String: A sequence of letters, words or
numbers, stored by and used in a program.
A string might be anything from a series of
numbers to a word, a sentence or a larger
chunk of text.

Subroutine: A routine within a routine.
Subroutines are often used to handle tasks that
might be needed again and again by a program.

Syntax: The structure of a programming
language, and the rules that govern how the
different instructions need to be written and
laid out.

Toolbar: A horizontal or vertical bar
containing icons that launch different tools in
an application.

Value: A number, letter or symbol stored
and used in a computer program. Values can
either be constant, where they stay the same
no matter what happens in the program, or
variables.

Variable: A value that changes as a program
runs its course. Variables aren’t so much the
value itself as the location that stores the
value. The program can refer to the location
by pointing to the variable, then use or change
whatever value is held in it.

Tecach Your Kids to Code

EDITORIAL

Editor: Stuart Andrews
Managing Editor: Priti Patel

Art Editor: Billbagnalldesign.com
Production: Rachel Storry
Contributors: Andrew Dixon

Deputy Managing Director:

MD of Advertising:
Julian Lloyd-Evans

MANAGEMENT

Managing Director: John Garewal

Tim Danton

The ‘MagBook' brand is a trademark of Dennis
Publishing Ltd, 30 Cleveland Street, London W1T
4JD. Company registered in England. All material

© Dennis Publishing Ltd, licensed by Felden 2014, and may not be reproduced in
whole or part without the consent of the publishers.

Coding for Kids: Scratch

ISBN: 1-78106-450-4
LICENSING & SYNDICATION

To license this product please contact Carlotta Serantoni on

ADVERTISING &
MARKETING

MagBook Advertising Manager:
Simone Daws +44 20 7907 6617
Production Manager:

Nicky Baker +44 20 7907 6056
MagBook Manager:

Dharmesh Mistry

+44 20 7907 6100

Newstrade Director: David Barker
MD of Enterprise: Martin Belson
Group Managing Director:

Tan Westwood

Chief Operating Officer:

Brett Reynolds

Group Finance Director:

Ian Leggett

Chief Executive: James Tye
Chairman: Felix Dennis

+44 20 7907 6550 or email carlotta_serantoni@dennis.co.uk
To syndicate content from this product please contact Anj Dosaj-Halai on +44
207907 6132 or email anj_dosaj-halai@dennis.co.uk

LIABILITY

While every care was taken during the production of this MagBook, the
publishers cannot be held responsible for the accuracy of the information or any
consequence arising from it. Dennis Publishing takes no responsibility for the
companies advertising in this MagBook.

The paper used within this MagBook is produced from sustainable fibre,
manufactured by mills with a valid chain of custody.

Printed at Wyndeham Southernprint

Resources

There are hundreds of websites where you can find tutorials, advice and
support while you learn more about coding. Here are our favourites

www.w3schools.com

This site provides tutorials and reference for many of
the big programming languages and tools used on the
web. A good resource for information and education
on HTML and JavaScript.

smallbasic.com/

Microsoft’s SmallBASIC website isn’t just the place
where you can download the language, but a useful
source of sample projects, tutorials and eBooks. Here,
you can also find the SmallBASIC blog, which is full of
useful hints and tips on the language.

www.khanacademy.org

Khan Academy teaches just about everything, but it
also runs free courses in programming and computer
science, with a JavaScript course that can take you
all the way from simple drawing and animations to
advanced natural simulations.

www.codeacademy.com

Code Academy is the best known of the specialist
code schools, running courses in Ruby, Python,
JavaScript and HTML. CodeAcademy was partly
responsible for the computer science curriculum
being used in many UK schools, and offers simple
projects where you can learn a few coding skills in
under half an hour.

www.kidsruby.com
KidsRuby is a simplified coding environment aimed

at aspiring young programmers. It all works with

real Ruby code, and you just write your code in one
window and run it in another, so you can see exactly
what any code you add or change does immediately.
Colour-coded text makes it easy to use, and the team
has started creating lessons and examples to help kids
on their way.

www.kodugamelab.com

Part game, part visual programming environment,
Kodu does a great job of introducing programming
concepts while helping kids create their own simple
games. It might not teach you how to code, but it does
help teach computational thinking, and it’s easy to use
and fun. Versions for Windows 8, the Xbox 360 and
earlier versions of Windows are available.

python4kids.wordpress.com/

A blog full of Python tutorials written by a
programmer for his son. The tutorials work in Python
2.7 rather than the latest version, but they’re easy to
follow and provide a good background.

Www.pygame.org

Pygame is a set of Python modules designed
specifically for writing games, and one that makes

the job of writing games in Python a whole lot easier.
It’s not designed specifically for kids, and you’ll need
python tuition elsewhere to make much out of it; a
rough working knowledge is essential before you even
start coding games.

Fun projects that will see
you get to grips with
programming fast

Take a tour around Scratch, say Get to grips with SmallBASIC,
“Hello World” with a magic cat, master its graphics functions,
and build your first Scratch game and create your own quiz
Learn how to paint with Scratch, use We introduce Visual Basic, build a
webcam graphics and motion controls, slideshow app, and show where to
and showcase your work to turn to push your coding
the world skills further
£9.99

ISBN:1-78106-450-4

